Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protonated nitrile

TABLE 19. Nitrile proton affinities, adiabatic ionization potential and homolytic bond dissociation energies0... [Pg.337]

A classical way to achieve regioselectivity in an (a -i- d -reaction is to start with a-carbanions of carboxylic acid derivatives and electrophilic ketones. Most successful are condensations with 1,3-dicarbonyl carbanions, e.g. with malonic acid derivatives, since they can be produced at low pH, where ketones do not enolize. Succinic acid derivatives can also be de-protonated and added to ketones (Stobbe condensation). In the first example given below a Dieckmann condensation on a nitrile follows a Stobbe condensation, and selectivity is dictated by the tricyclic educt neither the nitrile group nor the ketone is enolizable (W.S. Johnson, 1945, 1947). [Pg.58]

The allyl cyanoacetate 731 can be converted into an a, /3-unsaturated nitrile by the decarboxylation-elimination reaction[460], but allyl malonates cannot be converted into unsaturated esters, the protonation and allylation products being formed instead. [Pg.391]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

Inductive and resonance stabilization of carbanions derived by proton abstraction from alkyl substituents a to the ring nitrogen in pyrazines and quinoxalines confers a degree of stability on these species comparable with that observed with enolate anions. The resultant carbanions undergo typical condensation reactions with a variety of electrophilic reagents such as aldehydes, ketones, nitriles, diazonium salts, etc., which makes them of considerable preparative importance. [Pg.166]

Unsubstituted 3-alkyl- or 3-aryl-isoxazoles undergo ring cleavage reactions under more vigorous conditions. In these substrates the deprotonation of the H-5 proton is concurrent with fission of the N—O and C(3)—-C(4) bonds, giving a nitrile and an ethynolate anion. The latter is usually hydrolyzed on work-up to a carboxylic acid, but can be trapped at low temperature. As shown by Scheme 33, such reactions could provide useful syntheses of ketenes and /3-lactones (79LA219). [Pg.30]

The protonated azirine system has also been utilized for the synthesis of heterocyclic compounds (67JA44S6). Thus, treatment of (199) with anhydrous perchloric acid and acetone or acetonitrile gave the oxazolinium perchlorate (207) and the imidazolinium perchlorate (209), respectively. The mechanism of these reactions involves 1,3-bond cleavage of the protonated azirine and reaction with the carbonyl group (or nitrile) to produce a resonance-stabilized carbonium-oxonium ion (or carbonium-nitrilium ion), followed by attack of the nitrogen unshared pair jf electrons to complete the cyclization. [Pg.69]

Nitriles are susceptible to nucleophilic addition. In their hydrolysis, water adds to the carbon-nitrogen triple bond. In a series of proton-transfer steps, an anide is produced ... [Pg.870]

In acid, the nitrile is protonated on nitrogen. Nucleophilic addition of water yields an imino acid. [Pg.1241]

Carboxyl-related and acyl substituents. Included here are cyano, protonated amidinium ion, thionoacyl, acyl (Ar—CO, H—CO, Alkyl—CO), carboxamido, carboaryloxy, carboalkoxy, carboxy (unionized), amidino (unionized), and carboxylate anion, listed approximately in order of decreasing electron attraction or activation. The relative activation by some of these groups (e.g., ketone, aldehyde, nitrile) will change upon reversible interaction with the nucleophile, which will vary with the group and with the nucleophile (e.g., MeO , N3, NCS ). Irreversible interaction will be obvious when the reaction products in kinetic studies are characterized. [Pg.228]

Another route to the amido complexes originates from [(>j-Tp )W(CO) (PhC=CMe)(OTf)l and benzylamine and yields [(i -Tp )W(CO)(PhC=CMe) (NHCH2Ph)] (96JA6916). The latter can be protonated with tetrafluoroboric acid to give the amine derivative [(> -Tp )W(CO)(PhC=CMe)(NH2CH2Ph)](Bp4), and this process can be reversed by -butyllithium. Hydride abstraction by silver tetrafiuoroborate, molecular iodine, or PhsCPEe leads to the cationic imine derivatives [(> -Tp )W(CO)(PhC=CMe)(HN=CHPh)]". -Butyllithium deproto-nates the product and gives the neutral azavinylidene species [(> -Tp )W(CO) (PhC=CMe)(N=CHPh)]. The latter with silver tetrafiuoroborate forms the cationic nitrile species [(j -Tp )W(CO)(PhC=CMe)(N=CPh)](Bp4). [Pg.187]

The C-coordinated thiazolium complexes are the result of the proton-induced cyclization reactions (980M513). Thus, complex 1 on protonation with tetrafiuoroboric acid yields the C-coordinated thiazolium structure 2. In turn, the nitrile complex 3 under these conditions is transformed to the thiazolium cationic species 4. Protonation of the amido complex 5 with tetrafiuoroboric acid also results in a cyclization but it proceeds differently. The amino group of the CONH2 moiety is lost and BF3-framework is coordinated via the carbonyl oxygen in an overall neutral complex 6. [Pg.192]

Base catalyzed nitrile hydrolysis involves nucleophilic addition of hydroxide ion to the polar C N bond to give an imine anion in a process similar to nucleophilic addition to a polar C=0 bond to give an alkoxide anion. Protonation then gives a hydroxy imine, which tautomerizes (Section 8.4) to an amide in a step similar to the tautomerization of an enol to a ketone. The mechanism is shown in Figure 20.4. [Pg.768]

Reduction Conversion of Nitriles into Amines Reduction of a nitrile with LiAIH4 gives a primary amine, RNH . The reaction occurs by nucleophilic addition of hydride ion to the polar C=N bond, yielding an imine anion, which still contains a C=N bond and therefore undergoes a second nucleophilic addition of hydride to give a dianion. Both monoanion and dianion intermediates are undoubtedly stabilized by Lewis acid-base complexafion to an aluminum species, facilitating the second addition that would otherwise be difficult Protonation of the dianion by addition of water in a subsequent step gives the amine. [Pg.769]

Methods of synthesis for carboxylic acids include (1) oxidation of alkyl-benzenes, (2) oxidative cleavage of alkenes, (3) oxidation of primary alcohols or aldehydes, (4) hydrolysis of nitriles, and (5) reaction of Grignard reagents with CO2 (carboxylation). General reactions of carboxylic acids include (1) loss of the acidic proton, (2) nucleophilic acyl substitution at the carbonyl group, (3) substitution on the a carbon, and (4) reduction. [Pg.774]

Acid-catalyzed hydrolysis of a nitrile to give a carboxylic acid occurs by initial protonation of the nitrogen atom, followed by nucleophilic addition of water. Review the mechanism of base-catalyzed nitrile hydrolysis in Section 20.7, and then write all the steps involved in the acicl-catalyzed reaction, using curved arrows to represent electron flow in each step. [Pg.780]

Certain ketoximes can be converted to nitriles by the action of proton or Lewis acids. Among these are oximes of a-diketones (illustrated above), a-keto acids, a-dialkylamino ketones, a-hydroxy ketones, p-keto ethers, and similar compounds. These are fragmentation reactions, analogous to 17-25 and 17-26. For example, ot-dialkylamino ketoximes also give amines and aldehydes or ketones besides nitriles. [Pg.1349]

Until recently the products of all nitrile cyclizations by the Thorpe reaction had been formulated as imines, although the products were found in 1955 to be better written as the enamine structure. In order to verify the reaction mechanism of the Thorpe reaction, the solid-state reaction of 84 and Bu OK was monitored by measurement of IR spectra in Nujol mulls. As the reaction proceeds (Scheme 14), the CN absorption of 84 at 2250 cm" decreases and a new CN absorption of the imine intermediate (87) arises at 2143 cm As 87 is converted into 88 by a proton migration, the CN absorption of 87 at 2143 cm" disappears, and only the CN absorption of 88 at 2189 cm remains finally [13]. [Pg.18]

The nucleophiles that are used for synthetic purposes include water, alcohols, carboxylate ions, hydroperoxides, amines, and nitriles. After the addition step is complete, the mercury is usually reductively removed by sodium borohydride, the net result being the addition of hydrogen and the nucleophile to the alkene. The regio-selectivity is excellent and is in the same sense as is observed for proton-initiated additions.17... [Pg.294]

Compounds (99) and (100) are thought to be formed by addition of cyanide ion to the ring ortho to the carbonyl, followed by protonation at oxygen, aromatization by tautomerization, hydrolysis of the nitrile, and lactonization upon acidification. The photolysis of 2-methoxyacetophenone, on the other hand, results in rearrangement to 3-methoxyacetophenone ... [Pg.278]


See other pages where Protonated nitrile is mentioned: [Pg.338]    [Pg.338]    [Pg.439]    [Pg.278]    [Pg.155]    [Pg.2]    [Pg.93]    [Pg.226]    [Pg.213]    [Pg.68]    [Pg.1309]    [Pg.61]    [Pg.118]    [Pg.23]    [Pg.92]    [Pg.552]    [Pg.724]    [Pg.815]    [Pg.1022]    [Pg.6]    [Pg.410]    [Pg.429]    [Pg.665]    [Pg.274]    [Pg.97]    [Pg.12]    [Pg.370]    [Pg.253]    [Pg.107]    [Pg.522]    [Pg.14]   
See also in sourсe #XX -- [ Pg.158 , Pg.199 ]




SEARCH



© 2024 chempedia.info