Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrile polymerization

Note 2. The nitrile polymerizes (dimer ) upon prolonged heating. [Pg.176]

Uses Catalyst for synthesis of pyridines from alkynes and nitriles polymerization inhibitor of olefins up to 200 C in Diels-Alder reactions as paint drier oxygen stripping agent Manuf/Distrib. Acres Org. http //www.acros.be-, Aldrich http //www.sigma-aidrich.com, Alfa Aesar http //www.aifa.com, Boulder Scientific Pfaltz Bauer http //www.pfaltzandbauer.com Strem Chems. http //www.strem.com... [Pg.990]

Grassie and co-workers (1958) [146] proposed that the hydrogenated naphthyridine structure was formed by the nitrile polymerization reaction alone. [Pg.236]

As mentioned above, polyacrylonitrile is unstable at elevated temperatures. On heating above about 200°C, polyacrylonitrile yields a red solid with very little formation of volatile products. When the red residue is heated at about 350°C there is produced a brittle black material of high thermal stability. The first step in these changes consists of a nitrile polymerization reaction whilst the second step involves aromatization to form a condensed polypyridine ladder polymer ... [Pg.132]

The kinds of vinyl monomers which undergo anionic polymerization are those with electron-withdrawing substituents such as the nitrile, carboxyl, and phenyl groups. We represent the catalysts as AB in this discussion these are substances which break into a cation (A ) and an anion (B ) under the conditions of the reaction. In anionic polymerization it is the basic anion which adds across the double bond of the monomer to form the active center for polymerization ... [Pg.404]

Acrylonitrile (AN), C H N, first became an important polymeric building block in the 1940s. Although it had been discovered in 1893 (1), its unique properties were not realized until the development of nitrile mbbers during World War II (see Elastomers, synthetic, nitrile rubber) and the discovery of solvents for the homopolymer with resultant fiber appHcations (see Fibers, acrylic) for textiles and carbon fibers. As a comonomer, acrylonitrile (qv) contributes hardness, rigidity, solvent and light resistance, gas impermeabiUty, and the abiUty to orient. These properties have led to many copolymer apphcation developments since 1950. [Pg.191]

Polyquinolines have also been obtained by a post-polymerization thermal treatment of poly(enamino nitriles) (93). The resulting polymers show excellent thermal stabiUty, with initial weight losses occurring between 500 and 600°C in air (tga) under nitrogen, initial weight loss occurs at about 600°C and there is a 20% weight loss up to 800°C. [Pg.538]

Plasticizers. Monomeric (mol wt 250—450) plasticizers (qv) are predominantiy phthalate, adipate, sebacate, phosphate, or trimeUitate esters. Organic phthalate esters like dioctyl phthalate (DOP) are by far the most common plasticizers in flexible PVC. Phthalates are good general-purpose plasticizers which impart good physical and low temperature properties but lack permanence in hot or extractive service conditions and are therefore sometimes called migratory plasticizers. Polymeric plasticizers (mol wt up to 5000 or more) offer an improvement in nonmigratory permanence at a sacrifice in cost, low temperature properties, and processibiHty examples are ethylene vinyl acetate or nitrile polymers. [Pg.327]

Three generations of latices as characterized by the type of surfactant used in manufacture have been defined (53). The first generation includes latices made with conventional (/) anionic surfactants like fatty acid soaps, alkyl carboxylates, alkyl sulfates, and alkyl sulfonates (54) (2) nonionic surfactants like poly(ethylene oxide) or poly(vinyl alcohol) used to improve freeze—thaw and shear stabiUty and (J) cationic surfactants like amines, nitriles, and other nitrogen bases, rarely used because of incompatibiUty problems. Portiand cement latex modifiers are one example where cationic surfactants are used. Anionic surfactants yield smaller particles than nonionic surfactants (55). Often a combination of anionic surfactants or anionic and nonionic surfactants are used to provide improved stabiUty. The stabilizing abiUty of anionic fatty acid soaps diminishes at lower pH as the soaps revert to their acids. First-generation latices also suffer from the presence of soap on the polymer particles at the end of the polymerization. Steam and vacuum stripping methods are often used to remove the soap and unreacted monomer from the final product (56). [Pg.25]

Acrylonitrile—butadiene copolymers (nitrile—butadiene mbber, NBR) are also produced via emulsion polymerization of butadiene with acrylonitrile,... [Pg.346]

Poly(butadiene- (9-acrylonitrile) [9008-18-3] NBR (64), is another commercially significant random copolymer. This mbber is manufactured by free-radical emulsion polymerization. Important producers include Copolymer Rubber and Chemical (Nysyn), B. F. Goodrich (Hycar), Goodyear (Chemigum), and Uninoyal (Paracdl). The total U.S. production of nitrile mbber (NBR) in 1990 was 95.6 t (65). The most important property of NBR mbber is its oil resistance. It is used in oil well parts, fuels, oil, and solvents (64) (see Elastomers, synthetic— nitrile rubber). [Pg.184]

Simplified nitrile mbber polymerization recipes are shown in Table 2 for "cold" and "hot" polymerization. Typically, cold polymerization is carried out at 5°C and hot at 30°C. The original technology for emulsion polymerization was similar to the 30°C recipe, and the redox initiator system that allowed polymerization at lower temperature was developed shortiy after World War II. The latter uses a reducing agent to activate the hydroperoxide initiator and soluble iron to reactivate the system by a reduction—oxidation mechanism as the iron cycles between its ferrous and ferric states. [Pg.519]

Table 2. Typical Nitrile Rubber Polymerization Recipes... Table 2. Typical Nitrile Rubber Polymerization Recipes...
Third Monomers. In order to achieve certain property improvements, nitrile mbber producers add a third monomer to the emulsion polymerization process. When methacrylic acid is added to the polymer stmcture, a carboxylated nitrile mbber with greatly enhanced abrasion properties is achieved (9). Carboxylated nitrile mbber carries the ASTM designation of XNBR. Cross-linking monomers, eg, divinylbenzene or ethylene glycol dimethacrylate, produce precross-linked mbbers with low nerve and die swell. To avoid extraction losses of antioxidant as a result of contact with fluids duriag service, grades of NBR are available that have utilized a special third monomer that contains an antioxidant moiety (10). FiaaHy, terpolymers prepared from 1,3-butadiene, acrylonitrile, and isoprene are also commercially available. [Pg.522]

An unusual method for the preparation of syndiotactic polybutadiene was reported by The Goodyear Tire Rubber Co. (43) a preformed cobalt-type catalyst prepared under anhydrous conditions was found to polymerize 1,3-butadiene in an emulsion-type recipe to give syndiotactic polybutadienes of various melting points (120—190°C). These polymers were characterized by infrared spectroscopy and nuclear magnetic resonance (44—46). Both the Ube Industries catalyst mentioned previously and the Goodyear catalyst were further modified to control the molecular weight and melting point of syndio-polybutadiene by the addition of various modifiers such as alcohols, nitriles, aldehydes, ketones, ethers, and cyano compounds. [Pg.531]

Acrylonitrile-butadiene rubber (also called nitrile or nitrile butadiene rubber) was commercially available in 1936 under the name Buna-N. It was obtained by emulsion polymerization of acrylonitrile and butadiene. During World War II, NBR was used to replace natural rubber. After World War II, NBR was still used due to its excellent properties, such as high oil and plasticizer resistance, excellent heat resistance, good adhesion to metallic substrates, and good compatibility with several compounding ingredients. [Pg.587]


See other pages where Nitrile polymerization is mentioned: [Pg.204]    [Pg.237]    [Pg.286]    [Pg.253]    [Pg.254]    [Pg.127]    [Pg.204]    [Pg.237]    [Pg.286]    [Pg.253]    [Pg.254]    [Pg.127]    [Pg.70]    [Pg.210]    [Pg.276]    [Pg.314]    [Pg.329]    [Pg.200]    [Pg.404]    [Pg.82]    [Pg.82]    [Pg.83]    [Pg.217]    [Pg.373]    [Pg.506]    [Pg.519]    [Pg.101]    [Pg.485]    [Pg.516]    [Pg.517]    [Pg.520]    [Pg.522]    [Pg.145]    [Pg.733]    [Pg.580]    [Pg.588]   
See also in sourсe #XX -- [ Pg.451 ]

See also in sourсe #XX -- [ Pg.451 ]




SEARCH



Anionic chain polymerization nitriles

Nitrile resin polymerizations

Nitrile rubber cold polymerization

© 2024 chempedia.info