Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrile oxides with acrylates

This regioselectivity is practically not influenced by the nature of subsituent R. 3,5-Disubstituted isoxazolines are the sole or main products in [3 + 2] cycloaddition reactions of nitrile oxides with various monosubstituted ethylenes such as allylbenzene (99), methyl acrylate (105), acrylonitrile (105, 168), vinyl acetate (168) and diethyl vinylphosphonate (169). This is also the case for phenyl vinyl selenide (170), though subsequent oxidation—elimination leads to 3-substituted isoxazoles in a one-pot, two-step transformation. 1,1-Disubstituted ethylenes such as 2-methylene-1 -phenyl-1,3-butanedione, 2-methylene-1,3-diphenyl- 1,3-propa-nedione, 2-methylene-3-oxo-3-phenylpropanoates (171), 2-methylene-1,3-dichlo-ropropane, 2-methylenepropane-l,3-diol (172) and l,l-bis(diethoxyphosphoryl) ethylene (173) give the corresponding 3-R-5,5-disubstituted 4,5-dihydrooxazoles. [Pg.22]

However, most asymmetric 1,3-dipolar cycloaddition reactions of nitrile oxides with alkenes are carried out without Lewis acids as catalysts using either chiral alkenes or chiral auxiliary compounds (with achiral alkenes). Diverse chiral alkenes are in use, such as camphor-derived chiral N-acryloylhydrazide (195), C2-symmetric l,3-diacryloyl-2,2-dimethyl-4,5-diphenylimidazolidine, chiral 3-acryloyl-2,2-dimethyl-4-phenyloxazolidine (196, 197), sugar-based ethenyl ethers (198), acrylic esters (199, 200), C-bonded vinyl-substituted sugar (201), chirally modified vinylboronic ester derived from D-( + )-mannitol (202), (l/ )-menthyl vinyl ether (203), chiral derivatives of vinylacetic acid (204), ( )-l-ethoxy-3-fluoroalkyl-3-hydroxy-4-(4-methylphenylsulfinyl)but-1 -enes (205), enantiopure Y-oxygenated-a,P-unsaturated phenyl sulfones (206), chiral (a-oxyallyl)silanes (207), and (S )-but-3-ene-1,2-diol derivatives (208). As a chiral auxiliary, diisopropyl (i ,i )-tartrate (209, 210) has been very popular. [Pg.25]

The use of chiral auxiliaries to induce (or even control) diastereoselectivity in the cycloaddition of nitrile oxides with achiral alkenes to give 5-substituted isoxazolines has been investigated by a number of groups. With chiral acrylates, this led mostly to low or modest diastereoselectivity, which was explained in terms of the conformational flexibility of the vinyl-CO linkage of the ester (Scheme 6.33) (179). In cycloadditions to chiral acrylates (or acrylamides), both the direction of the facial attack of the dipole as well as the conformational preference of the rotamers need to be controlled in order to achieve high diastereoselection. Although the attack from one sector of space may well be directed or hindered by the chiral auxiliary, a low diastereomer ratio would result due to competing attack to the respective 7i-faces of both the s-cis and s-trans rotamers of the acrylate or amide. [Pg.393]

The camphor-derived chiral acrylate 160a was used in reactions with nitrones by Olsson (272) (Scheme 12.51). They observed low endo/exo-selectivity, but excellent diastereofacial discrimination in the reactions of cyclic nitrones with 160a. They also studied the reactions of nitrile oxides with 160a,b. Fair selectivity of up to 68-75% de was obtained. However, for the reaction of the crotonyl derivative 160b with nitrile oxides, mixtures of regiomers were obtained. [Pg.853]

The cycloadducts formed from the Diels-Alder reaction of 3-amino-5-chloro-2(17/)-pyrazinones with methyl acrylate in toluene are subject to two alternative modes of ring transformation yielding either methyl 6-cyano-l,2-dihydro-2-oxo-4-pyridinecarboxylates or the corresponding 3-amino-6-cyano-l,2,5,6-tetrahydro-2-oxo-4-pyridinecarboxylates. From the latter compounds, 3-amino-2-pyridones can be generated through subsequent loss of HCN <96 JOC(61)304>. Synthesis of 3-spirocyclopropane-4-pyridone and furo[2,3-c]pyridine derivatives can be achieved by the thermal rearrangement of nitrone and nitrile oxide cycloadducts of bicyclopropylidene <96JCX (61)1665>. [Pg.224]

Baker s yeast catalyzed the regioselective cycloaddition of stable aromatic nitrile oxides ArCNO [Ar = 2,6-C12C6H3, 2,4,6-Me3C6H2, 2,4,6-(MeO)3C6H2] to ethyl cinnamate, ethyl 3-(p-tolyl)acrylate, and tert-butyl cinnamates (218). Reactions of dichloro- and trimethoxybenzonitrile oxides with all three esters proceeded regio- and stereoselectively to form exclusively alkyl tran.v -3,5-diary 1 -... [Pg.27]

Breton FJ-M, Parker DK. Curing acrylic polymers with polyfunctional nitrile oxide compounds, Br. Patent 2347142 2000 [Chem. Abstr. 2001 134 43280]. [Pg.126]

Dipolar addition is closely related to the Diels-Alder reaction, but allows the formation of five-membered adducts, including cyclopentane derivatives. Like Diels-Alder reactions, 1,3-dipolar cycloaddition involves [4+2] concerted reaction of a 1,3-dipolar species (the An component and a dipolar In component). Very often, condensation of chiral acrylates with nitrile oxides or nitrones gives only modest diastereoselectivity.82 1,3-Dipolar cycloaddition between nitrones and alkenes is most useful and convenient for the preparation of iso-xazolidine derivatives, which can then be readily converted to 1,3-amino alcohol equivalents under mild conditions.83 The low selectivity of the 1,3-dipolar reaction can be overcome to some extent by introducing a chiral auxiliary to the substrate. As shown in Scheme 5-51, the reaction of 169 with acryloyl chloride connects the chiral sultam to the acrylic acid substrate, and subsequent cycloaddition yields product 170 with a diastereoselectivity of 90 10.84... [Pg.308]

Isoxazolines can be transformed into a,p-enones by several methods from the initial aldol product. This strategy was applied by Barco et al. (285) toward the synthesis of ( )-pyrenophorin (98), a macrocychc fow(enone-lactone) with antifungal properties. The hydroxy group was introduced from the nitrile oxide component (95), while the carboxy function was derived from the acrylate dipo-larophile. Thus, cycloaddition of the optically active nitropentyl acetate 94 to methyl acrylate 95 afforded isoxazoline 96 as a mixture of optically active diastereomers. Reductive hydrolysis using Raney nickel/acetic acid gave p-hydro-xyketone (97), which was subsequently utilized for the synthesis of (—)-pyreno-phorin (98) (Scheme 6.63) (285). [Pg.424]

The auxihary acrylates 161 and 162 have been used in 1,3-dipolar cycloadditions with nitrile oxides. The camphor-derived acrylate 161 underwent a 1,3-dipolar cycloaddition with benzonitrile oxide with up to 56% de (Scheme 12.51) (263). The auxiliary in acrylate 162 is derived from naturally occurring L-quebrachitol, and provided an effective shielding of the re-face of the alkene in the reaction with benzonitrile oxide, as 90% de was obtained (273). Compound 163 was used in a reaction with the nitrone 1-pyrrole-1-oxide, and the reaction proceeded to give a complex mixture of products (274). [Pg.853]

Many substances can be partially oxidized by oxygen if selective catalysts are used. In such a way, oxygen can be introduced in hydrocarbons such as olefins and aromatics to synthesize aldehydes (e.g. acrolein and benzaldehyde) and acids (e.g. acrylic acid, phthalic acid anhydride). A selective oxidation can also result in a dehydrogenation (butene - butadiene) or a dealkylation (toluene -> benzene). Other molecules can also be selectively attacked by oxygen. Methanol is oxidized to formaldehyde and ammonia to nitrogen oxides. Olefins and aromatics can be oxidized with oxygen together with ammonia to nitriles (ammoxidation). [Pg.123]

Most of the approaches outlined in Figure 15.10 have been successfully realized on insoluble supports, either with the alkene or alkyne linked to the support, or with support-bound 1,3-dipoles (Table 15.16). Nitrile oxides are highly reactive 1,3-dipoles and react smoothly with both electron-poor and electron-rich alkenes, including enol ethers [200]. The addition of resin-bound nitrile oxides to alkenes (Entries 5 and 6, Table 15.16) has also been accomplished enantioselectively under catalysis by diisopropyl tartrate and EtMgBr [201], The diastereoselectivity of the addition of nitrile oxides and nitrones to resin-bound chiral acrylates has been investigated [202], Intramolecular 1,3-dipolar cycloadditions of nitrile oxides and nitrones to alkenes have been used to prepare polycyclic isoxazolidines on solid phase (Entries 7 and 9, Table 15.16). [Pg.418]

Similarly, nitrile oxides react with methyl acrylate 2.42 to give the adduct 2.43 with the substituent on C-5 and terminal alkenes also react in this way to place the alkyl group on C-5. Many dipoles react well with electron-rich dipolarophiles, but not with electron-poor dipolarophiles. Other dipoles are the other way round. To make matters even more complex, the presence of substituents on the dipole can change these patterns and impart their own regioselectivity. Thus the carbonyl ylid reaction 2.45 has a well defined regiochemistry determined only by the substituents, since the core dipole is symmetrical. This reaction also illustrates the point that dipolarophiles do not have to be alkenes or alkynes—they can also have heteroatoms. [Pg.12]

In addition to being an efficient chiral controller in a number of stereoselective transformations of chiral acrylates, (i.e. the Diels-Alder reaction, the conjugate reduction, the asymmetric dihydroxylation, and the nitrile oxide cycloaddition ) the bomanesultam (11) has been shown to be an exceptionally efficient chiral auxiliary for stereoselective aldol condensations (eqs eq 3 and eq 4). Depending upon the reaction conditions, A -propionylsultam can produce either the syn or anti aldol product with an excellent diastereoselectivity, Furthermore, good diastereoselectiv-ities are also observed for the corresponding acetate aldol reaction (eq 5), ... [Pg.177]

Methyl 3-(/>-nitrobenzoyloxy)acrylate was exploited as a methyl propiolate equivalent with reverse regioselectivity in 1,3-dipolar cycloaddition with nitrile oxides, leading to 3-aryl-4-methoxycarbonylisoxazoles in moderate to good yields <2000JHC75>. [Pg.428]

Michael addition has been applied to the formation of cyclopropanic systems. Thus, the addition of phosphonate carbanions generated by LDA in THF, by NaH in THF, by thallium(I) ethoxide in refluxing THF, or by electrochemical technique to oc,P-unsaturated esters provides a preparation of substituted 2-(alkoxycarbonyl)cyclopropylphosphonates in moderate to good yields via a tandem Michael addition-cyclization sequence (Scheme 8.47). The cyclopropanation has also been achieved via oxidation with iodine in the presence of KF-AI2O3. Nitrile ylides prepared from acyl chlorides and diethyl isocyanomethylphosphonate in the presence of Et3N react with methyl acrylates by a 1,3-dipolar cycloaddition to give phosphoryl pyrrolines or pyrroles. ... [Pg.446]

Multicomponent reactions (MCRs) were applied to the synthesis of substituted isoxazolines. For example, 64 was obtained by addition of nitro-alkene 60 and acrylate 61 to a solution of isonitrile 59 generated in situ by reaction of trimethylsilyl cyanide and isobutene oxide in the presence of Pd(CN)2 <05OL3179>. This cascade MCR is believed to occur through [1+4] cycloaddition of 59 with 60, subsequent fragmentation of 62 and 1,3-DC of nitrile oxide 63 with 61. Under microwave irradiation, reaction times could be reduced from several hours to 15 min, with comparable yields. [Pg.293]

Beilstein Handbook Reference) AI3-17104 BRN 2302822 CCRIS 7052 Di-(2-ethylhexyl) terephthalate EINECS 229-176-9 HSDB 6150 Kodaflex DOTP Terephthalic acid, bis(2-ethylhexyl) ester. Plasticizer used with PVC resins, in PVC plastisols, rubber application including wire coatings, ajtomotive and furniture upholstery compatible with acrylics, CAB, cellulose nitrate, polyvinyl butyral, styrene, oxidizing alkyds, nitrile rubber. Solid mp = 30-34° bp = 400 d = 0.980. Eastman Chem. Co. [Pg.71]

By using a multicomponent cascade reaction. Parsons et al. [88] achieved one-pot sequential [1+4] and [3+2] cycloadditions to synthesize highly substituted iso-xazolines via nitrile oxides (Scheme 11.28). These five-component reactions proceed by initial formation of isonitriles 109 that react with nitroalkenes 110 to form unstable N-(isoxazolylidene)alkylamines, which in turn fragment to generate the nitrile oxides 111. Cycloaddition then occurs with methyl acrylate, chosen for its expected reactivity with nitrile oxide dipoles, to generate the isoxazolines 112. Reactions using standard thermal conditions and microwave irradiation were com-... [Pg.549]

Features Compatible with acrylics, CAB, cellulose nitrate, polyvinyl bu-tyral, styrene, oxidizing alkyds, nitrile rubber Manuf./Distrib. Ashland C.P. Hall Eastman Houghton Chem. PolyOne/ Elastomers Perf. Addit. [Pg.1092]


See other pages where Nitrile oxides with acrylates is mentioned: [Pg.528]    [Pg.880]    [Pg.213]    [Pg.289]    [Pg.218]    [Pg.5]    [Pg.105]    [Pg.852]    [Pg.698]    [Pg.348]    [Pg.321]    [Pg.596]    [Pg.266]    [Pg.463]    [Pg.289]    [Pg.452]    [Pg.165]    [Pg.3156]    [Pg.151]    [Pg.278]    [Pg.438]    [Pg.334]    [Pg.1002]    [Pg.376]    [Pg.147]   
See also in sourсe #XX -- [ Pg.5 , Pg.263 ]

See also in sourсe #XX -- [ Pg.5 , Pg.263 ]




SEARCH



Acrylates cycloaddition reactions with nitrile oxides

Acrylic nitrile

Nitrile oxides

Nitriles nitrile oxides

Oxidative nitriles

© 2024 chempedia.info