Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoxazole 3-substituted 5-

Isoxazoles substituted in the 3-position, but unsubstituted in the 5-position, react under more vigorous conditions to give acids and nitriles (Scheme 24). Anthranils unsubstituted in the 3-position are similarly converted into anthranilic acids by bases (Scheme 25) (67AHC(8)277). Attempted acylation of anthranils gives benzoxazine derivatives via a similar ring opening (Scheme 26) (67AHC(8)277). [Pg.71]

The 1,2,4-oxadiazole dioxolanes 144 react with hydroxylamine and hydrazines to form the 5-pyrazole- and isoxazole-substituted 1,2,4-oxadiazoles 146 via the dioxolane ring-opened intermediates 145 (Scheme 17). Reaction of compounds 144 with amidine or guanidine salts allows access to pyrimidine substituted analogues 147, via intermediate 145 (X = C(NH)R1), albeit in lower yield <1996JHC1943, 1998JHC161>. [Pg.263]

The isomeric isoxazole-substituted phosphine oxides (61) and (63) have been synthesised and used in Horner-Wittig reactions to prepare isoxazoles of types (62) and (64) regiospecifically.32 An alternative approach to (62) and (64) involves reaction of the isoxazole aldehydes (e.g. 65) with alkyldiphenylphosphine oxide anions (Scheme 11). The routes described have been applied to the synthesis of isoxazoles containing leukotriene-like carbon chains. [Pg.84]

Isoxazoles substituted with electron-withdrawing groups at the 4-position undergo electrochemical and yeast-catalysed N-O bond cleavage releasing the enolised dicarbonylimine functionality <01JCS(P1)1168>. [Pg.237]

Substituted isoxazoles, pyrazoles and isothiazoles can exist in two tautomeric forms (139, 140 Z = 0, N or S Table 37). Amino compounds exist as such as expected, and so do the hydroxy compounds under most conditions. The stability of the OH forms of these 3-hydroxy-l,2-azoles is explained by the weakened basicity of the ring nitrogen atom in the 2-position due to the adjacent heteroatom at the 1-position and the oxygen substituent at the 3-position. This concentration of electron-withdrawing groups near the basic nitrogen atom causes these compounds to exist mainly in the OH form. [Pg.36]

For isoxazoles the first step is the fission of the weak N—O bond to give the diradical (51) which is in equilibrium with the vinylnitrene (52). Recyclization now gives the substituted 2//-azirine (53) which via the carbonyl-stabilized nitrile ylide (54) can give the oxazole (55). In some cases the 2H-azirine, which is formed both photochemically and thermally, has been isolated in other cases it is transformed quickly into the oxazole (79AHC(2.5)U7). [Pg.46]

A multiply bonded nitrogen atom deactivates carbon atoms a or y to it toward electrophilic attack thus initial substitution in 1,2- and 1,3-dihetero compounds should be as shown in structures (110) and (111). Pyrazoles (110 Z = NH), isoxazoles (110 Z = 0), isothiazoles (110 Z = S), imidazoles (111 Z = NH, tautomerism can make the 4- and 5-positions equivalent) and thiazoles (111 Z = S) do indeed undergo electrophilic substitution as expected. Little is known of the electrophilic substitution reactions of oxazoles (111 Z = O) and compounds containing three or more heteroatoms in one ring. Deactivation of the 4-position in 1,3-dihetero compounds (111) is less effective because of considerable double bond fixation (cf. Sections 4.01.3.2.1 and 4.02.3.1.7), and if the 5-position of imidazoles or thiazoles is blocked, substitution can occur in the 4-position (112). [Pg.56]

Imidazoles are hydroxymethylated by CH2O at the 4-position 1-substituted imidazoles react at the 2-position. Isoxazoles can be chloromethylated in the 4-position (63AHC(2)365). [Pg.59]

Neutral azoles are readily C-lithiated by K-butyllithium provided they do not contain a free NH group (Table 6). Derivatives with two heteroatoms in the 1,3-orientation undergo lithiation preferentially at the 2-position other compounds are lithiated at the 5-position. Attempted metallation of isoxazoles usually causes ring opening via proton loss at the 3-or 5-position (Section 4.02.2.1.7.5) however, if both of these positions are substituted, normal lithiation occurs at the 4-position (Scheme 21). [Pg.69]

The first 1,2-benzisoxazole, 3-phenyl-l,2-benzisoxazole, was obtained from the treatment of o-bromobenzophenone oxime with alkali in 1892 (1892CB1498,1892CB3291). 2,1-Benzisoxazole has been known since 1882, being obtained as a reduction product of o-nitrobenzaldehyde with tin and hydrochloric acid (1882CB2105). In general, benzisoxazoles behave much like substituted isoxazoles. Numerous structural ambiguities occur in the early literature of these two systems, and these have been discussed in the above reviews. [Pg.3]

Polarization and dipole moment studies for alkyl-, aryl-, carbonyl- hydroxy- (keto-) and amino-isoxazoles have been compiled and likewise support the low electron nature of the ring 63AHC(2)365, 62HC(l7)l,p. 177). More recent studies predict the order of electrophilic substitution to be 5>4> 3 on frontier electron density values of 0.7831, 0.3721 and 0.0659, respectively 7lPMH(4)237,pp.245,247). This contrasts with earlier reports of 4>5>3 on density values of —0.09, -t-0.14 and -t-0.18 in that order 63AHC(2 365). [Pg.4]

A study of the effect of substitution patterns in oxadiazoles and isoxazoles and their effect on the UV spectra in the lO -lO M concentration range was performed. Hypso-chromic effects and deviations from Beer s law were observed and were believed to be associated with antiparallel, sandwich-type self-association via dipole-dipole interactions. Beer s law is followed when the molecular dipole moments are small or when self-association is sterically hindered. [Pg.4]

Characteristic bands occur in the 1300-1000 cm region for 3,4- and 3,5-disubstituted isoxazoles (7i PMh(4)265, p. 330), while bands below 1000 cm contain modes for most substitution patterns (71PMh(4)265, p. 332). Total assignments for isoxazole and isoxazole-d have been made (63SA1145, 7lPMH(4)265,p. 325) and some of the thermodynamic functions calculated (68SA(A)361, 71PMH(4)265,p.330). [Pg.5]

A number of studies on the NMR spectra of isoxazole has been compiled and this list includes the coupling constants in various solvents as well as the neat liquid. The N signal for isoxazole appears at 339.6 p.p.m. relative to TTAI and is at much lower field than in other azoles. Reports of spectra of substituted isoxazoles also abound (79AhC(25)147, p. 201). [Pg.5]

C NMR data have been used to determine the substitution pattern in complex isoxazoles by comparison with simply substituted molecules (75JCS(P1)2115, 760MR226, 80JOM(195)275). Additional data on the parent system and derivatives are available 77H(7)20l). [Pg.6]

No detailed study of the solubility characteristics of more complexly substituted isoxazoles has been made. However, qualitative indications of solubility characteristics may be found associated with their synthesis. [Pg.9]

Isoxazoles, isoxazolines, isoxazolidines and benzisoxazoles are all thermally stable, distilling without decomposition, but the stability of the system depends on the substitution pattern. For example, aminoisoxazoles distill unchanged but the isoxazole carboxylic acids usually decompose at or above their melting points without giving the corresponding isoxazole. [Pg.10]

The acid-base properties of isoxazole and methylisoxazoles were studied in proton donor solvents, basic solvents or DMSO by IR procedures and the weakly basic properties examined (78CR(Q(268)613). The basicity and conjugation properties of arylisoxazoles were also studied by UV and basicity measurements, and it was found that 3-substituted isoxazoles were always less basic than the 5-derivatives. Protonation increased the conjugation in these systems (78KGS327). [Pg.10]

With 3- and 4-substituted isoxazoles the tautomeric form normally present is the XH tautomer, (13 X = O) and (14 X = O, N) respectively. However, other influences need to be considered as in cycloserine (IS), which exists as a zwitterion, as does 5-amino-3-hydroxy-isoxazole (16). [Pg.11]

Benzisoxazoles undergo electrophilic substitution in the benzo ring, but with nucleophiles the reaction occurs in the isoxazole moiety, often leading to salicylonitriles with 3-unsubstituted systems. The isomeric 2,1-benzisoxazoles are characterized by the ease with which they may be converted into other heterocyclic systems. [Pg.12]

The reactivity of isoxazole in the presence of light, heat or electron impact has been well studied and the various transformations analyzed in terms of reaction pathways and of the potential intermediates. These studies have also been extended to a large variety of substituted derivatives (79AHC(25)147). [Pg.12]

The iso)tazole ring is rather resistant to sulfonation. However, on prolonged heating with chlorosulfonic acid, 5-methyl-, 3-methyl- and 3,5-diraethyl-isoxazoles are converted into a mixture of the sulfonic acid and the corresponding sulfonyl chloride. The sulfonic acid group enters the 4-position even when other positions are available for substitution. The sulfonation of the parent isoxazole occurs only under more drastic conditions (20% oleum) than that of alkyl isoxazoles isoxazole-4-sulfonic acid is obtained in 17% yield. In the case of 5-phenylisoxazole (64), only the phenyl nucleus is sulfonated to yield a mixture of m-and p-arenesulfonic acid chlorides (65) and (66) in a 2 1 ratio (63AHC(2)365). [Pg.24]

Isoxazoles are stable toward peracids and are fairly stable to other acidic oxidizing agents such as chromic and nitric acids, and acidic permanganate. 3-Substituted isoxazoles are... [Pg.26]

The ring opening of 3-substituted isoxazoles proceeds differently, and the reaction can take various courses depending on the nature of the substituent. The reaction has been effected by sodium hydroxide and sodium ethoxide in alcoholic or aqueous media and by sodium amide and also n-butyllithium in inert solvents. [Pg.30]

Other amino substituted isoxazoles undergo ring-opening reactions on treatment with base. Thus the amidine derivative (249) gave the triazole (250) (64TL149), while the triazene (251) on reaction with ammonia gave the tetrazole (252) (64X461). [Pg.55]

The reaction of the steroidal )3-ketoaldehyde (293) with hydroxylamine hydrochloride in acetic acid gave a mixture of the 3- and 5-substituted isoxazoles (294) and (295a). In sodium acetate buffer the reaction provided exclusively the 5-substituted isomer (29Sb) (66JOC3193). [Pg.62]


See other pages where Isoxazole 3-substituted 5- is mentioned: [Pg.360]    [Pg.25]    [Pg.360]    [Pg.143]    [Pg.36]    [Pg.166]    [Pg.4]    [Pg.5]    [Pg.6]    [Pg.8]    [Pg.11]    [Pg.12]    [Pg.13]    [Pg.20]    [Pg.22]    [Pg.27]    [Pg.40]    [Pg.52]    [Pg.52]    [Pg.54]    [Pg.61]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



3- Halo-5-substituted isoxazoles

3- Phenyl-5-substituted isoxazoles

3-Substituted isoxazoles, tautomerism

5-Aryl-substituted isoxazoles

Electrophilic substitution isoxazole

Isoxazoles 3- substituted, preparation

Isoxazoles electrophilic substitution

Isoxazoles electrophilic substitution, mechanism

Isoxazoles nucleophilic substitution

© 2024 chempedia.info