Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrile oxides stereoselectivity

The stereoselectivity of conjugate addition and cyclopropanation of the chiral nitrovinyldioxolanes 17 can be effectively controlled <96TL6307>, and good selectivity is observed in the ultrasound-promoted cycloaddition of nitrile oxides to alkenyldioxolanes 18 <95MI877,95JOC7701 >. Asymmetric Simmons-Smith cyclopropanation of 19 proceeds with... [Pg.193]

Keywords Intramolecular 1,3-dipolar cycloadditions. Stereoselectivity, Nitrile oxides, SUyl nitronates. Oximes, H-Nitrones, Azides, NitrUimines... [Pg.1]

The versatility of the INOC reaction is evident from the synthesis of tetrahy-drofurans fused to an isoxazoline 22a-f (Eq. 3) [181. a-Allyloxyaldoximes 21, formed by the reduction of jS-nitrostyrenes 19 with SnCl2 2H2O in the presence of an unsaturated alcohol 20, are transformed to isoxazolines 22 in high yield on treatment with NaOCl via stereoselective ring closure of a nitrile oxide intermediate (Table 2). [Pg.5]

Chiral tricyclic fused pyrrolidines 29a-c and piperidines 29d-g have been synthesized starting from L-serine, L-threonine, and L-cysteine taking advantage of the INOC strategy (Scheme 4) [19]. L-Serine (23 a) and L-threonine (23 b) were protected as stable oxazolidin-2-ones 24a and 24b, respectively. Analogously, L-cysteine 23 c was converted to thiazolidin-2-one 24 c. Subsequent N-allylation or homoallylation, DIBALH reduction, and oximation afforded the ene-oximes, 27a-g. Conversion of ene-oximes 27a-g to the desired key intermediates, nitrile oxides 28 a-g, provided the isoxazolines 29 a-g. While fused pyrrolidines 29a-c were formed in poor yield (due to dimerization of nitrile oxides) and with moderate stereoselectivity (as a mixture of cis (major) and trans (minor) isomers), corresponding piperidines 29d-g were formed in good yield and excellent stereoselectivity (as exclusively trans isomers, see Table 3). [Pg.6]

In the seven-step stereoselective total synthesis of ptilocaulin 44 [21 ], a potent antileukemic and antimicrobial agent isolated [22] from marine sponges, the oxime 36 was treated with NaOCl providing the tricyclic isoxazoline 38 in 89% yield without isolation of the nitrile oxide intermediate 37 (Scheme 5) [23]. Isoxazoline 38 was obtained as a mixture of four diastereomers and their ratio was... [Pg.7]

The intramolecular cycloaddition of the norbornadiene-tethered nitrile oxides 110 (Eq. 11 and Table 11) was reported to be highly regio- and stereoselective, providing the exo cycloadduct 111 as the exclusive product out of the four possible regio/stereoisomers [36]. The cycloadduct 111 provides a stereoselective entry into tricyclic (e.g., 112) and spirocyclic (e.g., 113) frameworks. [Pg.16]

A regio- and stereospecific INOC reaction of unsymmetrical silaketals 114, synthesized in one pot from unsaturated alcohols, nitro ethanol, and dichloro-silanes, via the nitrile oxide 115 to isoxazolines 116 has been described (Scheme 14) [37a]. The intermolecular version of the cycloaddition, under similar conditions, proceeds with poor regio and stereoselectivity. [Pg.16]

Although nitrile oxide cycloadditions have been extensively investigated, cycloadditions of silyl nitronates, synthetic equivalent of nitrile oxides in their reactions with olefins, have not received similar attention. Since we found that the initial cycloadducts, hl-silyloxyisoxazolidines, are formed with high degree of stereoselectivity and can be easily transformed into isoxazolines upon treatment with acid or TBAF, intramolecular silylnitronate-olefin cycloadditions (ISOC) have emerged as a superior alternative to their corresponding INOC reactions [43]. Furthermore, adaptability of ISOC reactions to one-pot tandem sequences involving 1,4-addition and ISOC as the key steps has recently been demonstrated [44]. [Pg.21]

Intramolecular nitrone cycloadditions often require higher temperatures as nitrones react more sluggishly with alkenes than do nitrile oxides and the products contain a substituent on nitrogen which may not be desirable. Conspicuously absent among various nitrones employed earlier have been NH nitrones, which are tautomers of the more stable oximes. However, Grigg et al. [58 a] and Padwa and Norman [58b] have demonstrated that under certain conditions oximes can undergo addition to electron deficient olefins as Michael acceptors, followed by cycloadditions to multiple bonds. We found that intramolecular oxime-olefin cycloaddition (lOOC) can occur thermally via an H-nitrone and lead to stereospecific introduction of two or more stereocenters. This is an excellent procedure for the stereoselective introduction of amino alcohol functionality via N-0 bond cleavage. [Pg.30]

Cycloadditions of nitrones, nitrile oxides or diazo compounds to thiete dioxides do not show the high stereoselectivity observed with acyclic vinyl sulfones, and mixtures of the two possible adducts are formed . The charge-transfer stabilization energy calculated according to the Klopman-Salem perturbational approach is able to account for the experimental trends of the isomer ratio in terms of the major stereochemical structural differences between the acyclic vinyl sulfones and the four-membered ring sulfones (see Section IV.B.3). [Pg.458]

The synthesis in Scheme 13.64 was carried out by E. Carreira and co-workers at ETH in Zurich, Switzerland. A key step in the synthesis in Scheme 13.64 is a stereoselective cycloaddition using a phosphonyl-substituted nitrile oxide, which was used to form the C(16)-C(17) bond and install the C(15) oxygen. [Pg.1226]

The C(6)-C(15) segment was synthesized by Steps C-l and C-2. The stereoselectivity of the cycloaddition reaction between the nitrile oxide and allylic alcohol is the result of a chelated TS involving the Mg alkoxide.39... [Pg.1226]

Hassner and coworkers have developed a one-pot tandem consecutive 1,4-addition intramolecular cycloaddition strategy for the construction of five- and six-membered heterocycles and carbocycles. Because nitroalkenes are good Michael acceptors for carbon, sulfur, oxygen, and nitrogen nucleophiles (see Section 4.1 on the Michael reaction), subsequent intramolecular silyl nitronate cycloaddition (ISOC) or intramolecular nitrile oxide cycloaddition (INOC) provides one-pot synthesis of fused isoxazolines (Scheme 8.26). The ISOC route is generally better than INOC route regarding stereoselectivity and generality. [Pg.270]

Recently, silicon-tethered diastereoselective ISOC reactions have been reported, in which effective control of remote acyclic asymmetry can be achieved (Eq. 8.91).144 Whereas ISOC occur stereoselectively, INOC proceeds with significantly lower levels of diastereoselection. The reaction pathways presented in Scheme 8.28 suggest a plausible hypo thesis for the observed difference of stereocontrol. The enhanced selectivity in reactions of silyl nitronates may he due to 1,3-allylie strain. The near-linear geometry of nitrile oxides precludes such differentiating elements (Scheme 8.28). [Pg.273]

Recently, Denmark and coworkers have developed a new strategy for the construction of complex molecules using tandem [4+2]/[3+2]cycloaddition of nitroalkenes.149 In the review by Denmark, the definition of tandem reaction is described and tandem cascade cycloadditions, tandem consecutive cycloadditions, and tandem sequential cycloadditions are also defined. The use of nitroalkenes as heterodienes leads to the development of a general, high-yielding, and stereoselective method for the synthesis of cyclic nitronates (see Section 5.2). These dipoles undergo 1,3-dipolar cycloadditions. However, synthetic applications of this process are rare in contrast to the functionally equivalent cycloadditions of nitrile oxides. This is due to the lack of general methods for the preparation of nitronates and their instability. Thus, as illustrated in Scheme 8.29, the potential for a tandem process is formulated in the combination of [4+2] cycloaddition of a donor dienophile with [3+2]cycload-... [Pg.274]

Dipolar cycloaddition reactions are of main interest in nitrile oxide chemistry. Recently, reviews and chapters in monographs appeared, which are devoted to individual aspects of these reactions. First of all, problems of asymmetric reactions of nitrile oxides (130, 131), including particular aspects, such as asymmetric metal-catalyzed 1,3-dipolar cycloaddition reactions (132, 133), development of new asymmetric reactions utilizing tartaric acid esters as chiral auxiliaries (134), and stereoselective intramolecular 1,3-dipolar cycloadditions (135) should be mentioned. Other problems considered are polymer-supported 1,3-dipolar cycloaddition reactions, important, in particular, for combinatorial chemistry... [Pg.19]

Intermolecular Cycloaddition at the C=C Double Bond Addition at the C=C double bond is the main type of 1,3-cycloaddition reactions of nitrile oxides. The topic was treated in detail in Reference 157. Several reviews appeared, which are devoted to problems of regio- and stereoselectivity of cycloaddition reactions of nitrile oxides with alkenes. Two of them deal with both inter- and intramolecular reactions (158, 159). Important information on regio-and stereochemistry of intermolecular 1,3-dipolar cycloaddition of nitrile oxides to alkenes was summarized in Reference 160. [Pg.21]

Cycloaddition with nitrile oxides occur with compounds of practically any type with a C=C bond alkenes and cycloalkenes, their functional derivatives, dienes and trienes with isolated, conjugated or cumulated double bonds, some aromatic compounds, unsaturated and aromatic heterocycles, and fullerenes. The content of this subsection is classified according to the mentioned types of dipolarophiles. Problems of relative reactivities of dienophiles and dipoles, regio- and stereoselectivity of nitrile oxide cycloadditions were considered in detail by Jaeger and... [Pg.21]

The cycloaddition of 3,5-dichloro-2,4,6-trimethylbenzonitrile oxide to tricar-bonylchromium complexed styrenes proceeds with high stereoselectivity (Scheme 1.17), thus offering a new synthetic route to optically active 3,5-di-substituted 4,5-dihydroisoxazoles (213). The preferred formation of cycloadducts 44 rather than 45 shows that nitrile oxide attacks the it face opposite to Cr(CO)3 and the reactive rotamer of the dipolarophile is transoid (213). [Pg.26]

Baker s yeast catalyzed the regioselective cycloaddition of stable aromatic nitrile oxides ArCNO [Ar = 2,6-C12C6H3, 2,4,6-Me3C6H2, 2,4,6-(MeO)3C6H2] to ethyl cinnamate, ethyl 3-(p-tolyl)acrylate, and tert-butyl cinnamates (218). Reactions of dichloro- and trimethoxybenzonitrile oxides with all three esters proceeded regio- and stereoselectively to form exclusively alkyl tran.v -3,5-diary 1 -... [Pg.27]

Cycloalkene Derivatives Cyclopropenes readily interact with nitrile oxides. Reactions of a broad series of 3,3-disubstituted cyclopropenes with 4-substituted benzonitrile, methoxycarbonyl- and cyanoformonitrile oxides (229) as well as with di(isopropoxy)phosphorylformonitrile oxide (230) give 2-oxa-3-azabicyclo[3.1.0]hexene derivatives 62. Stereoselectivity of the cycloaddition is governed by both steric and polar factors. In particular, steric factors are supposed to prevail for 3-methyl-3-phenylcyclopropene affording 62 [R1 =... [Pg.30]

The 1,3-dipolar cycloaddition reactions of nitrile oxides to unsymmetrically substituted norbomenes (243) and to dicyclopentadiene and its derivatives (244) proceed with complete stereoselectivity. The approach of the dipole takes place exclusively from the exo-face of the bicycloheptane moiety, generally... [Pg.33]

Heterocycles Both non-aromatic unsaturated heterocycles and heteroaromatic compounds are able to play the role of ethene dipolarophiles in reactions with nitrile oxides. 1,3-Dipolar cycloadditions of various unsaturated oxygen heterocycles are well documented. Thus, 2-furonitrile oxide and its 5-substituted derivatives give isoxazoline adducts, for example, 90, with 2,3- and 2,5-dihydro-furan, 2,3-dihydropyran, l,3-dioxep-5-ene, its 2-methyl- and 2-phenyl-substituted derivatives, 5,6-bis(methoxycarbonyl)-7-oxabicyclo[2.2.1]hept-2-ene, and 1,4-epoxy-l,4-dihydronaphthalene. Regio- and endo-exo stereoselectivities have also been determined (259). [Pg.37]

Dimethyl-3-methylenepyrrolidine-2-thione, which reacts with nitrones regio- and stereoselectively at its exocyclic C=C bond to give only spirocy-cloadducts 116, behaves more complicatedly with nitrile oxides. The latter undergo 1,3-dipolar cycloaddition both to the exocyclic C=C and C=S double bonds with subsequent cycloreversion and formation of spiro-lactams 117 (281). [Pg.43]

A characteristic feature of contemporary investigations in the held under consideration, is the interest in cycloaddition reactions of nitrile oxides with acetylenes in which properties of the C=C bond are modified by complex formation or by an adjacent metal or metalloid atom. The use of such compounds offers promising synthetic results. In particular, unlike the frequently unselec-tive reactions of 1,3-enynes with 1,3-dipoles, nitrile oxides add chemo-, regio-and stereoselectively to the free double bond of (l,3-enyne)Co2(CO)6 complexes to provide 5-alkynyl-2-oxazoline derivatives in moderate to excellent yield. For example, enyne 215 reacts with in situ generated PhCNO to give 80% yield of isoxazoline 216 (372). [Pg.64]

The 1,3-dipolar cycloaddition of a variety of aromatic and aliphatic nitrile oxides to 2.5-/ra//.v-2.5-diphenylpyrrolidine-derived acrylamide and cinnamamide 399, efficiently affords the corresponding 4,5-dihydroisoxazole-5-carboxamides 400 in highly regio- and stereoselectivity (Scheme 1.47). Acid hydrolysis of these products affords enantiopure 4,5-dihydroisoxazole-5-carboxylic acids 401 (443). [Pg.84]

The stereoselective synthesis of the 12-acetoxy enone 428, related to the limonoid azadiradione, has been achieved in 12 steps (16% overall yield), starting from tricyclic diester 429. The key steps involve an intramolecular 1,3-dipolar cycloaddition of a nitrile oxide and a Stille coupling reaction of vinyl iodide with stannylfuran (469). [Pg.93]

Diastereoselective intermolecular nitrile oxide—olefin cycloaddition has been used in an enantioselective synthesis of the C(7)-C(24) segment 433 of the 24-membered natural lactone, macrolactin A 434 (471, 472). Two (carbonyl)iron moieties are instrumental for the stereoselective preparation of the C(8)-C(ii) E,Z-diene and the C(i5) and C(24) sp3 stereocenters. Also it is important to note that the (carbonyl)iron complexation serves to protect the C(8)-C(ii) and C(i6)-C(i9) diene groups during the reductive hydrolysis of an isoxazoline ring. [Pg.95]

Two stereoselective aldol reactions, followed by a nitrile oxide cycloaddition and a stereoselective late-stage epoxidation are the key steps in the total synthesis of myriaporones 1, 3, and 4 (436, 437, and 438). The synthesis allows... [Pg.95]

A stereoselective total synthesis of erythronolide A, using two Mg/z-mediated cycloadditions of nitrile oxides has been described. Of broader significance, the strategy not only facilitates the synthesis of specific polyketide targets (i.e., natural products) but also opens up new possibilities for the preparation of nonnatural analogs (482). [Pg.97]

The stereoselective formation of the C ring of paclitaxel 443 has been accomplished by the nitrile oxide [3 + 2] cycloaddition of intermediate 444 to the preformed A ring (484). [Pg.97]

The stereoselectivity of the INOC process substantially differs from that of the ISOC process, the stereoselectivity of the ISOC process being generally much higher. Evidently, this is due to a considerable differentiation of the transition states. It gives to different stereoisomers due to higher hindrance of the nitronate dipole compared to the linear nitrile oxide dipole. [Pg.561]

Using a stoichiometric amount of (i ,i )-DIPT as the chiral auxiliary, optically active 2-isoxazolines can be obtained via asymmetric 1,3-dipolar addition of achiral allylic alcohols with nitrile oxides or nitrones bearing an electron-withdrawing group (Scheme 5-53).86a Furthermore, the catalytic 1,3-dipolar cycloaddition of nitrile oxide has been achieved by adding a small amount of 1,4-dioxane (Scheme 5-53, Eq. 3).86b The presence of ethereal compounds such as 1,4-dioxane is crucial for the reproducibly higher stereoselectivity. [Pg.310]

Substituted 4,5-dihydro-5-vinylisoxazoles (40), obtained by regio- and stereospecific cycloaddition of nitrile oxides to dienes, undergo smooth osmium-catalyzed c/s-hydro-xylation to give amino-polyol precursors (equation 28)45. The reaction is anti selective, the diastereomeric ratios ranging from 73 27 up to 99 1. Highest stereoselectivities were observed when R3 was methyl. Thus, whereas osmylation of 40a afforded a 78 22 mixture of 41a and 42a, respectively, in 80% overall yield, similar treatment of 40b resulted in a 92 8 mixture of 41b and 42b, respectively, in 70% overall yield. The cycloaddition-osmylation sequence allows control of the relative configuration of up to 4 contiguous asymmetric centers. [Pg.708]

Photo-oxidation of l,l-dialkyl-2-arylhydrazines by single-electron transfer with trimethylsilyl cyanide (TMSCN) as cyanide ion source leads to regio- and stereoselective a-hydrazino nitriles. This stereoselective cyanation of hydrazines takes place on the more substituted carbon atom compared with the results obtained with tertiary amines (Scheme 5). [Pg.170]

Nitrile oxides are widely used as dipoles in cycloaddition reactions for the synthesis of various heterocyclic rings. In order to promote reactions between nitrile oxides and less reactive carbon nucleophiles, Auricchio and coworkers studied the reactivity of nitrile oxides towards Lewis acids. They observed that, in the presence of gaseous BF3, nitrile oxides gave complexes in which the electrophilicity of the carbon atom was so enhanced that it could react with aromatic systems, stereoselectively yielding aryl oximes 65 and 66 (Scheme 35). ... [Pg.180]

The convergence of the nitronate and nitrile oxide cycloadditions has allowed for the direct comparisons of yields and stereoselectivities of the two processes. For intramolecular reactions, the nitronate dipole typically required longer reaction times and/or elevated temperatures (22,98,135), however, the nitronate cycloaddition shows considerably higher diastereoselectivity (Table 2.42). Interestingly, the diastereoselectivity is dependent on the placement of a substituent on the tether. In the case of the silyl nitronate derived from 172, the diastereoselectivity is controlled by the substituent at C(l), while cyclization of the analogous nitrile oxide is governed by the substituent at C(l ) (Scheme 2.10) (124). [Pg.126]

Regio- and Stereoselectivity in Intramolecular Nitrile Oxide Cycloadditions. 407... [Pg.361]


See other pages where Nitrile oxides stereoselectivity is mentioned: [Pg.336]    [Pg.458]    [Pg.6]    [Pg.18]    [Pg.22]    [Pg.336]    [Pg.20]    [Pg.21]    [Pg.39]    [Pg.44]    [Pg.85]    [Pg.258]    [Pg.361]   
See also in sourсe #XX -- [ Pg.410 , Pg.411 , Pg.412 , Pg.413 , Pg.414 , Pg.415 ]

See also in sourсe #XX -- [ Pg.410 , Pg.411 , Pg.412 , Pg.413 , Pg.414 , Pg.415 ]

See also in sourсe #XX -- [ Pg.60 , Pg.277 , Pg.310 ]




SEARCH



Nitrile oxides

Nitrile stereoselective

Nitriles nitrile oxides

Oxidation stereoselectivity

Oxidative nitriles

Stereoselective oxidative

Stereoselectivity nitrile oxide cycloadditions

© 2024 chempedia.info