Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselectivity nitrile oxide cycloadditions

Intermediate for the preparation of vinyloxazolines for stereoselective nitrile oxide cycloaddition Intermediate for polymer 225 supported catalyst for asymmetric allylic alkylation... [Pg.389]

Houk KN, Moses SR, Wu Y-D, Rondan NG, Jager V, Schohe R, Fronczek FR (1984) Stereoselective nitrile oxide cycloadditions to chiral allyl ethers and alcohols. The inside alkoxy effect. J Am Chem Soc 106 3880-3882... [Pg.221]

Keywords Intramolecular 1,3-dipolar cycloadditions. Stereoselectivity, Nitrile oxides, SUyl nitronates. Oximes, H-Nitrones, Azides, NitrUimines... [Pg.1]

Although nitrile oxide cycloadditions have been extensively investigated, cycloadditions of silyl nitronates, synthetic equivalent of nitrile oxides in their reactions with olefins, have not received similar attention. Since we found that the initial cycloadducts, hl-silyloxyisoxazolidines, are formed with high degree of stereoselectivity and can be easily transformed into isoxazolines upon treatment with acid or TBAF, intramolecular silylnitronate-olefin cycloadditions (ISOC) have emerged as a superior alternative to their corresponding INOC reactions [43]. Furthermore, adaptability of ISOC reactions to one-pot tandem sequences involving 1,4-addition and ISOC as the key steps has recently been demonstrated [44]. [Pg.21]

Hassner and coworkers have developed a one-pot tandem consecutive 1,4-addition intramolecular cycloaddition strategy for the construction of five- and six-membered heterocycles and carbocycles. Because nitroalkenes are good Michael acceptors for carbon, sulfur, oxygen, and nitrogen nucleophiles (see Section 4.1 on the Michael reaction), subsequent intramolecular silyl nitronate cycloaddition (ISOC) or intramolecular nitrile oxide cycloaddition (INOC) provides one-pot synthesis of fused isoxazolines (Scheme 8.26). The ISOC route is generally better than INOC route regarding stereoselectivity and generality. [Pg.270]

Cycloaddition with nitrile oxides occur with compounds of practically any type with a C=C bond alkenes and cycloalkenes, their functional derivatives, dienes and trienes with isolated, conjugated or cumulated double bonds, some aromatic compounds, unsaturated and aromatic heterocycles, and fullerenes. The content of this subsection is classified according to the mentioned types of dipolarophiles. Problems of relative reactivities of dienophiles and dipoles, regio- and stereoselectivity of nitrile oxide cycloadditions were considered in detail by Jaeger and... [Pg.21]

Two stereoselective aldol reactions, followed by a nitrile oxide cycloaddition and a stereoselective late-stage epoxidation are the key steps in the total synthesis of myriaporones 1, 3, and 4 (436, 437, and 438). The synthesis allows... [Pg.95]

The convergence of the nitronate and nitrile oxide cycloadditions has allowed for the direct comparisons of yields and stereoselectivities of the two processes. For intramolecular reactions, the nitronate dipole typically required longer reaction times and/or elevated temperatures (22,98,135), however, the nitronate cycloaddition shows considerably higher diastereoselectivity (Table 2.42). Interestingly, the diastereoselectivity is dependent on the placement of a substituent on the tether. In the case of the silyl nitronate derived from 172, the diastereoselectivity is controlled by the substituent at C(l), while cyclization of the analogous nitrile oxide is governed by the substituent at C(l ) (Scheme 2.10) (124). [Pg.126]

Regio- and Stereoselectivity in Intramolecular Nitrile Oxide Cycloadditions. 407... [Pg.361]

The alkoxy-inside model was further adapted in order to rationahze the stereoselectivities of nitrile oxide cycloadditions to alkenes that possess other allylic substituents. In the reaction of a-chiral alkenes (124) or allylic diphe-nylphosphane oxides (161) (Table 6.7), it was suggested that the largest group (L, diphenylphosphinoyl substituent) was anti, the medium sized group (M, alkyl or alkoxy substituent) was on the inside and the smallest group (S, hydrogen) was... [Pg.387]

REGIO- AND STEREOSELECTIVITY IN INTRAMOLECULAR NITRILE OXIDE CYCLOADDITIONS... [Pg.407]

An intramolecular nitrile oxide cycloaddition also served as the key step in the stereoselective assemblage of the skeleton of angular triquinane sesquiterpenes of the isocomene series. Tetracyclic isoxazoline 203 was obtained from oxime 202 [derived from tetrahydroindandione 201] and on treatment with sodium hypochlorite... [Pg.443]

A stereoselective synthesis of testosterone (261) was advanced by Fukumoto and co-workers (331), where ring B was joined to the C/D part by an intramolecular nitrile oxide cycloaddition. The key nitrile oxide dipole was generated in situ from oxime 258, which in turn was derived from the optically active tetrahydroin-danone 257. Tetracyclic isoxazoline (259) was obtained as a single stereoisomer... [Pg.450]

Few examples of total syntheses have been reported that involve an intramolecular nitrile oxide cycloaddition and ensuing reduction to an aminoalcohol. The very first example was reported by Confalone et al. (334) and involved a synthesis of the naturally occurring vitamin biotin (287). The nitro precursor 284 was easily prepared from cycloheptene. When treated with phenyl isocyanate-triethylamine, cycloaddition led to the all-cis-fused tricyclic isoxazoline 285 with high stereoselectivity (Scheme 6.102). Reduction with LiAlFLj afforded aminoalcohol 286 as a... [Pg.454]

The many successful applications of nitrile oxide cycloadditions in synthesis are intimately linked with theory, both the simple FMO variety as well as the more sophisticated ab initio treatment, where the work of Sustmann and subsequently of Houk and his group has been seminal. We, the practitioners, have thus been supplied with a consistent view on the nature of 1,3-dipoles, their reactivity toward dipolarophiles, and the origin and interpretation of stereoselectivity of cycloaddition chemistry. It is of course desirable that our understanding of the relative reactivities of alkenes as well as of many 1,3-dipoles would be also improved, thereby leading to simple, extended recipes for the chemist practicing synthetics. We hope that this account will stimulate further advances in this field of cycloaddition chemistry and promote further uses of nitrile oxides in organic synthesis. [Pg.462]


See other pages where Stereoselectivity nitrile oxide cycloadditions is mentioned: [Pg.21]    [Pg.258]    [Pg.361]    [Pg.387]    [Pg.391]    [Pg.395]    [Pg.410]    [Pg.410]    [Pg.461]    [Pg.789]    [Pg.106]    [Pg.285]    [Pg.311]    [Pg.315]    [Pg.319]    [Pg.334]    [Pg.334]   


SEARCH



Cycloaddition oxide

Cycloaddition stereoselection

Cycloadditions oxidative

Nitrile oxide cycloaddition

Nitrile oxides

Nitrile oxides cycloadditions

Nitrile oxides stereoselectivity

Nitrile stereoselective

Nitriles cycloaddition

Nitriles cycloadditions

Nitriles nitrile oxides

Oxidation stereoselectivity

Oxidative cycloaddition

Oxidative nitriles

Stereoselective cycloadditions

Stereoselective oxidative

© 2024 chempedia.info