Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitric acid effect

Cobalt Sesquitelluride is obtained in the hydrated form, Co2Te3.4H20, as a black precipitate when a solution of sodium telluride is added to one of cobalt acetate in dilute aqueous acetic acid.1 Hydrochloric and sulphuric acids are without action upon it, but nitric acid effects its oxidation. At 200° C. it loses water, and at red heat, tellurium if heated till no further loss in weight occurs, Cobalt Mono-telluride, CoTe, is obtained as a grey, crystalline substance of metallic lustre.2... [Pg.58]

Zeeman and Butler (Zl) analyzed wines for lead content. Wine samples of 50 ml were ashed to dryness and the residue taken up in 2 ml nitric acid, effecting a 25-fold concentration. The samples were aspirated into a propane-butane-air flame 8 inches in length, and a simple optical system with two flame traversals was employed. The authors showed that a certain amount of lead was lost in the ashing process, and the loss was smallest with lead sulfate. Lead concentrations in a variety of wines were 0.2-1 ppm. [Pg.53]

The treatment of a 2-(dialkoxyphosphinoyl)acetaldehyde with a mixture of acetic anhydride and nitric acid (effectively acetyl nitrate) containing a trace of sulphuric acid leads to very low yields to the dialkyl (nitromethyl)phosphonate, and a better procedure consists in the nitration of an enol ether of the acetaldehyde 84 (R = OR) with R =... [Pg.310]

In the above work the concentration of nitric acid was found from analysis of the quenched product emulsion, it being tacitly assumed that all the acid would be present in the aqueous phase. During the present work, as was shown earlier, appreciable quantities of nitric acid were found in the organic phase. This extraction of nitric acid effectively reduces the... [Pg.198]

The compound is only slightly soluble in water and dilute acids but is soluble in warm concentrated hydrochloric acid to form a dark green solution. It can be reprecipitated by cooling or by diluting such a solution. Concentrated nitric acid effects oxidation to the uranyl salt. With solutions of the alkali carbonates or hydrogen carbonates, uranium(IV) hydroxide is formed. With an excess of a solution of potassium carbonate and by atmospheric oxidation, potassium uranyl carbonate results. Uranium(IV) oxalate 6-hydrate is also soluble in solutions of alkali and ammonium oxalates to form the tetraoxalatouranate(IV)... [Pg.168]

Catalytic gas-phase reactions play an important role in many bulk chemical processes, such as in the production of methanol, ammonia, sulfuric acid, and nitric acid. In most processes, the effective area of the catalyst is critically important. Since these reactions take place at surfaces through processes of adsorption and desorption, any alteration of surface area naturally causes a change in the rate of reaction. Industrial catalysts are usually supported on porous materials, since this results in a much larger active area per unit of reactor volume. [Pg.47]

Dilute acids have no effect on any form of carbon, and diamond is resistant to attack by concentrated acids at room temperature, but is oxidised by both concentrated sulphuric and concentrated nitric acid at about 500 K, when an additional oxidising agent is present. Carbon dioxide is produced and the acids are reduced to gaseous oxides ... [Pg.168]

Amorphous carbon, having a far greater effective surface area than either diamond or graphite, is the most reactive form of carbon. It reacts with both hot concentrated sulphuric and hot concentrated nitric acids in the absence of additional oxidising agents but is not attacked by hydrochloric acid. [Pg.169]

The first nitration to be reported was that of beri2ene itself. Mitscher-lich in 1834 prepared nitrobenzene by treating benzene with fuming nitric acid. Not long afterwards the important method of effecting nitration with a mixture of nitric and sulphuric acids ( mixed acid ) was introduced, evidently in a patent by Mansfield the poor quality of early nitric acid was probably the reason why the method was developed. Since these beginnings, nitration has been the subject of continuous study. [Pg.1]

The state of aqueous solutions of nitric acid In strongly acidic solutions water is a weaker base than its behaviour in dilute solutions would predict, for it is almost unprotonated in concentrated nitric acid, and only partially protonated in concentrated sulphuric acid. The addition of water to nitric acid affects the equilibrium leading to the formation of the nitronium and nitrate ions ( 2.2.1). The intensity of the peak in the Raman spectrum associated with the nitronium ion decreases with the progressive addition of water, and the peak is absent from the spectrum of solutions containing more than about 5% of water a similar effect has been observed in the infra-red spectrum. ... [Pg.7]

Nitric acid being the solvent, terms involving its concentration cannot enter the rate equation. This form of the rate equation is consistent with reaction via molecular nitric acid, or any species whose concentration throughout the reaction bears a constant ratio to the stoichiometric concentration of nitric acid. In the latter case the nitrating agent may account for any fraction of the total concentration of acid, provided that it is formed quickly relative to the speed of nitration. More detailed information about the mechanism was obtained from the effects of certain added species on the rate of reaction. [Pg.8]

Sulphuric acid catalysed nitration in concentrated nitric acid, but the effect was much weaker than that observed in nitration in organic solvents ( 3.2.3). The concentration of sulphuric acid required to double the rate of nitration of i-nitroanthraquinone was about 0-23 mol 1, whereas typically, a concentration of io mol 1 will effect the same change in nitration in mixtures of nitric acid and organic solvents. The acceleration in the rate was not linear in the concentration of catalyst, for the sensitivity to catalysis was small with low concentrations of sulphuric acid, but increased with the progressive addition of more catalyst and eventually approached a linear acceleration. [Pg.8]

Potassium nitrate anticatalysed nitration in nitric acid (the solutions used also contained 2-5 mol 1 of water) but the effect was small in comparison with the corresponding effect in nitration in organic solvents ( 3.2.3 4), for the rate was only halved by the addition of 0-31 mol 1 of the salt. As in the case of the addition of sulphuric acid, the effect was not linear in the concentration of the additive, and the variation of k j with [KNOgj/mol 1 " was similar to that of with [H2SO4]/ mol 1. ... [Pg.8]

The relative weakness of the two effects, and the adoption of the kinetic form of the catalysis to the linear law only when the concentration of the additive was greater than c. 0-2 mol 1 , results from the equilibria existing in anhydrous nitric acid. In the absence of catalyst,... [Pg.8]

The effect of potassium nitrate on the rate arises in a similar way. The concentration of nitrate ions in concentrated nitric acid is appreciable, and addition of small quantities of nitrate will have relatively little effect. Only when the concentration of added nitrate exceeds that of the nitrate present in pure nitric acid will the anticatalysis become proportional to the concentration of added salt. [Pg.9]

Therefore, in the cases of both additives, the kinetic law for the catalysis will assume a linear form when the concentration of the added species, or, in the case of sulphuric acid, the nitronium ion generated by its action, is comparable with the concentration of the species already present. This effect was observed to occur when the concentration of additive was about o-2 mol 1, a value in fair agreement with the estimated degree of dissociation of nitric acid ( 2.2.1). [Pg.9]

Nitration in aqueous solutions of nitric acid Added water retards nitration in concentrated nitric acid without disturbing the kinetic order of the reaction. The rate of nitration of nitrobenzene was depressed sixfold by the addition of 5 % of water, (c. 3 2 mol 1 ), but because of the complexity of the equilibria involving water, which exist in these media, no simple relationship could be found between the concentration of water and its effect on the rate. [Pg.9]

Concentrated solutions are here considered to be those containing > c. 89 % by weight of sulphuric acid. In these solutions nitric acid is completely ionised to the nitronium ion. This fact, and the notion that the nitronium ion is the most powerful electrophilic nitrating species, makes operation of this species in these media seem probable. Evidence on this point comes from the effect on the rate of added water ( 2.4.2)... [Pg.15]

There is increasing evidence that the ionisation of the organic indicators of the same type, and previously thought to behave similarly, depends to some degree on their specific structures, thereby diminishing the generality of the derived scales of acidity. In the present case, the assumption that nitric acid behaves like organic indicators must be open to doubt. However, the and /fp scales are so different, and the correspondence of the acidity-dependence of nitration with so much better than with Hg, that the effectiveness of the nitronium ion is firmly established. The relationship between rates of nitration and was subsequently shown to hold up to about 82 % sulphuric acid for nitrobenzene, />-chloronitrobenzene, phenyltrimethylammonium ion, and p-tolyltrimethylammonium ion, and for various other compounds. ... [Pg.22]

Unlike the effect of sulphuric acid upon nitration in nitric acid ( 2.2.3 where zeroth-order reactions are unknown), the form of the catalysis of zeroth-order nitration in nitromethane by added sulphuric acid does not deviate from a first-order dependence with low concentrations of catalyst. ... [Pg.41]

At relatively low temperatures, the effect of added nitric acid was to catalyse the reaction strongly, and to modify it to the autocatalytic form. At higher temperatures the effect of this additive was much weaker, as was the induced autocatalysis. Under these circumstances the catalysis was second-order in the concentration of nitric acid, and the presence of 0-25 mol l i of it brought about a sixfold change in the rate. [Pg.53]

Reducing the temperature or increasing the concentration of reactants, particularly of dinitrogen pentoxide, advanced the onset and increased the intensity of the autocatalysis. Added nitric acid and, to a greater extent sulphuric acid, made the effect more prominent. [Pg.53]

The catalysed reaction was considered to arise from the heterolysis of dinitrogen pentoxide induced by aggregates of molecules of nitric acid, to yield nitronium ions and nitrate ions. The reaction is autocatalytic because water produced in the nitration reacts with the pentoxide to form nitric acid. This explanation of the mechanism is supported by the fact that carbon tetrachloride is not a polar solvent, and in it molecules of nitric acid may form clusters rather than be solvated by the solvent ( 2.2). The observation that increasing the temperature, which will tend to break up the clusters, diminishes the importance of the catalysed reaction relative to that of the uncatalysed one is also consistent with this explanation. The effect of temperature is reminiscent of the corresponding effect on nitration in solutions of nitric acid in carbon tetrachloride ( 3.2) in which, for the same reason, an increase in the temperature decreases the rate. [Pg.53]

Further evidence that the nitronium ion was not the electrophile in the uncatalysed reaction, and yet became effective in the catalysed reaction, came from differences in the orientation of substitution. The nitration of chlorobenzene in the uncatalysed reaction yielded only 43 % of the para compound, whereas, when the catalysed reaction was made important by adding some nitric acid, the ratio of substitution was that usually observed in nitration involving the nitronium ion ( 5.3.4). In the case of the uncatalysed reaction however, the reaction was complicated by the formation of nitrophenols. [Pg.54]

For nitrations carried out in nitric acid, the anticatalytic influence of nitrous acid was also demonstrated. The effect was smaller, and consequently its kinetic form was not established with certainty. Further, the more powerful type of anticatalysis did not appear at higher concentrations (up to 0-23 mol 1 ) of nitrous acid. The addition of water (up to 5 % by volume) greatly reduced the range of concentration of nitrous acid which anticatalysed nitration in a manner resembling that required by the inverse square-root law, and more quickly introduced the more powerful type of anticatalytic effect. [Pg.56]

If we consider the effect of nitrous acid upon zeroth-order nitration in organic solvents we must bear in mind that in these circumstances dinitrogen tetroxide is not much ionised, so the measured concentration of nitrous acid gives to a close approximation the concentration of dinitrogen tetroxide. Further, the negligible self-ionisation of nitric acid ensures that the total concentration of nitrate ions is effectively that formed from dinitrogen tetroxide. Consequently as we can see from the equation for the ionisation of dinitrogen tetroxide ( 4.3.1),... [Pg.56]

The weak effect of nitrous acid upon nitration in nitric acid is a consequence of the already considerable concentration of nitrate ions supplied in this case by the medium. [Pg.56]

The effect of nitrous acid on the nitration of mesitylene in acetic acid was also investigated. In solutions containing 5-7 mol 1 of nitric acid and < c. 0-014 mol of nitrous acid, the rate was independent of the concentration of the aromatic. As the concentration of nitrous acid was increased, the catalysed reaction intervened, and superimposed a first-order reaction on the zeroth-order one. The catalysed reaction could not be made sufficiently dominant to impose a truly first-order rate. Because the kinetic order was intermediate the importance of the catalysed reaction was gauged by following initial rates, and it was shown that in a solution containing 5-7 mol 1 of nitric acid and 0-5 mol 1 of nitrous acid, the catalysed reaction was initially twice as important as the general nitronium ion mechanism. [Pg.58]

The nitric acid used in this work contained 10% of water, which introduced a considerable proportion of acetic acid into the medium. Further dilution of the solvent wnth acetic acid up to a concentration of 50 moles % had no effect on the rate, but the addition of yet more acetic acid decreased the rate, and in the absence of acetic anhydride there was no observed reaction. It was supposed from these results that the adventitious acetic acid would have no effect. The rate coefficients of the nitration diminished rapidly with time in one experiment the value of k was reduced by a factor of 2 in i h. Corrected values were obtained by extrapolation to zero time. The author ascribed the decrease to the conversion of acetyl nitrate into tetranitromethane, but this conversion cannot be the explanation because independent studies agree in concluding that it is too slow ( 5.3.1). [Pg.86]

The observation of nitration at a rate independent of the concentration and the nature of the aromatic means only that the effective nitrating species is formed slowly in a step which does not involve the aromatic. The fact that the rates of zeroth-order nitration under comparable conditions in solutions of nitric acid in acetic acid, sulpholan and nitromethane differed by at most a factor of 50 indicated that the slow step in these three cases was the same, and that the solvents had no chemical involvement in this step. The dissimilarity in the rate between these three cases and nitration with acetyl nitrate in acetic anhydride argues against a common mechanism, and indeed it is not required from evidence about zeroth-order rates alone that in the latter solutions the slow step should involve the formation of the nitronium ion. [Pg.88]


See other pages where Nitric acid effect is mentioned: [Pg.154]    [Pg.358]    [Pg.125]    [Pg.304]    [Pg.112]    [Pg.154]    [Pg.358]    [Pg.125]    [Pg.304]    [Pg.112]    [Pg.164]    [Pg.278]    [Pg.243]    [Pg.1041]    [Pg.1]    [Pg.12]    [Pg.37]    [Pg.40]    [Pg.41]    [Pg.54]    [Pg.59]    [Pg.67]    [Pg.76]   
See also in sourсe #XX -- [ Pg.487 ]




SEARCH



© 2024 chempedia.info