Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Niobium corrosion resistance

Addition of niobium to austenitic stainless steels inhibits intergranular corrosion by forming niobium carbide with the carbon that is present in the steel. Without the niobium addition, chromium precipitates as a chromium carbide film at the grain boundaries and thus depletes the adjacent areas of chromium and reduces the corrosion resistance. An amount of niobium equal to 10 times the carbon content is necessary to prevent precipitation of the chromium carbide. [Pg.26]

Niobium is also important in nonferrous metallurgy. Addition of niobium to tirconium reduces the corrosion resistance somewhat but increases the mechanical strength. Because niobium has a low thermal-neutron cross section, it can be alloyed with tirconium for use in the cladding of nuclear fuel rods. A Zr—l%Nb [11107-78-1] alloy has been used as primary cladding in the countries of the former USSR and in Canada. A Zr—2.5 wt % Nb alloy has been used to replace Zircaloy-2 as the cladding in Candu-PHW (pressurized hot water) reactors and has resulted in a 20% reduction in wall thickness of cladding (63) (see Nuclear reactors). [Pg.26]

Materials of Construction. Glass has excellent corrosion-resistance to wet or dry bromine. Lead is very usefiil for bromine service if water is less than 70 ppm. The bromine corrosion rate increases with concentrations of water and organics. Tantalum and niobium have excellent corrosion-resistance to wet or dry bromine. Nickel has usefiil resistance for dry bromine but is rapidly attacked by wet bromine. The fluoropolymers Kynar, Halar, and Teflon are highly resistant to bromine but are somewhat permeable. The rate depends on temperature, pressure, and stmcture (density) of fluoropolymer (63). [Pg.288]

Stainless Steel There are more than 70 standard types of stainless steel and many special alloys. These steels are produced in the wrought form (AISI types) and as cast alloys [Alloy Casting Institute (ACI) types]. Gener y, all are iron-based, with 12 to 30 percent chromium, 0 to 22 percent nickel, and minor amounts of carbon, niobium (columbium), copper, molybdenum, selenium, tantalum, and titanium. These alloys are veiy popular in the process industries. They are heat- and corrosion-resistant, noncontaminating, and easily fabricated into complex shapes. [Pg.2443]

Type 347—This is an 18/11 steel that is stabilized with niobium for welding. In nitric acid it is better than Type 321 otherwise, it has similar corrosion resistance. [Pg.71]

Niobium finds use in the production of numerous stainless steels for use at high temperatures, and Nb/Zr wires are used in superconducting magnets. The extreme corrosion-resistance of tantalum at normal temperatures (due to the presence of an exceptionally tenacious film of oxide) leads to its application in the construction of chemical plant, especially where it can be used as a liner inside cheaper metals. Its complete inertness to body fluids makes it the ideal material for surgical use in bone repair and internal suturing. [Pg.978]

The basic corrosion behaviour of stainless steels is dependent upon the type and quantity of alloying. Chromium is the universally present element but nickel, molybdenum, copper, nitrogen, vanadium, tungsten, titanium and niobium are also used for a variety of reasons. However, all elements can affect metallurgy, and thus mechanical and physical properties, so sometimes desirable corrosion resisting aspects may involve acceptance of less than ideal mechanical properties and vice versa. [Pg.519]

Other more highly alloyed types, of which a typical example is given in Table 3.11, have the designation of precipitation hardening martensitic. Relative to the simple 13% chromium types they have a substantial nickel content and low carbon with additions from molybdenum, copper, aluminium, titanium and niobium. These offer improved corrosion resistance, strength, toughness, weldability and fabrication properties, but not always together. [Pg.522]

The corrosion behaviour of amorphous alloys has received particular attention since the extraordinarily high corrosion resistance of amorphous iron-chromium-metalloid alloys was reported. The majority of amorphous ferrous alloys contain large amounts of metalloids. The corrosion rate of amorphous iron-metalloid alloys decreases with the addition of most second metallic elements such as titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel, copper, ruthenium, rhodium, palladium, iridium and platinum . The addition of chromium is particularly effective. For instance amorphous Fe-8Cr-13P-7C alloy passivates spontaneously even in 2 N HCl at ambient temperature ". (The number denoting the concentration of an alloy element in the amorphous alloy formulae is the atomic percent unless otherwise stated.)... [Pg.633]

It is somewhat less corrosion resistant than tantalum, and like tantalum suffers from hydrogen embrittlement if it is made cathodic by a galvanic couple or an external e.m.f., or is exposed to hot hydrogen gas. The metal anodises in acid electrolytes to form an anodic oxide film which has a high dielectric constant, and a high anodic breakdown potential. This latter property coupled with good electrical conductivity has led to the use of niobium as a substrate for platinum-group metals in impressed-current cathodic-protection anodes. [Pg.852]

Niobium like tantalum relies for its corrosion resistance on a highly adherent passive oxide film it is however not as resistant as tantalum in the more aggressive media. In no case reported in the literature is niobium inert to corrosives that attack tantalum. Niobium has not therefore been used extensively for corrosion resistant applications and little information is available on its performance in service conditions. It is more susceptible than tantalum to embrittlement by hydrogen and to corrosion by many aqueous corrodants. Although it is possible to prevent hydrogen embrittlement of niobium under some conditions by contacting it with platinum the method does not seem to be broadly effective. Niobium is attacked at room temperature by hydrofluoric acid and at 100°C by concentrated hydrochloric, sulphuric and phosphoric acids. It is embrittled by sodium hydroxide presumably as the result of hydrogen absorption and it is not suited for use with sodium sulphide. [Pg.854]

Water The corrosion resistance of pure niobium in water and steam at elevated temperatures is not sufficient to allow its use as a canning material in water-cooled nuclear reactors. Alloys of niobium with molybdenum, titanium, vanadium and zirconium however have improved resistance and have possibilities in this application. Whilst the Nb-lOTi-lOMo alloy offers... [Pg.854]

Niobium-Zirconium Nb-0-75Zr has excellent mechanical properties and similar corrosion resistance to pure niobium higher zirconium concentrations reduce the corrosion resistance. [Pg.858]

Niobium-Vanadium The presence of vanadium reduces niobium s corrosion resistance to most media. The alloy containing 12 6 at. Vo V however has excellent resistance to high-temperature water and steam, and this property and the alloy s relatively low neutron cross section give it considerable potential for nuclear applications. [Pg.859]

Niobium-Molybdenum The addition of molybdenum to niobium within the solid solution range gives improved corrosion resistance to hydrochloric and sulphuric acids. [Pg.859]

Chemical plant It has been reported from some plants producing hydrochloric acid that tantalum condensers are being replaced by ones of niobium, and in certain petroleum plant niobium is being specified for its corrosion resistance and mechanical properties. [Pg.859]

Niobium is resistant to pitting and general corrosion in hydrobromic acid up to the azeotropic concentration of 47wt% and 124°C the presence of free bromine enhances passivity . [Pg.860]

Tantalum-Niobium Alloying tantalum usually decreases the corrosion resistance of the metal due to metallic contamination of the TajOj passive film. The corrosion rates in HCl and H2SO4 environments increase roughly... [Pg.900]

Ninhydrin, 22 101 Ninhydrin-color reaction amino acids, 2 570 Niobates, 27 152-153 24 315 Niobia-phosphate catalytic aerogels, 2 763t Niobic acid, 27 152 Niobic salts, 27 152-153 Niobium (Nb), 27.132-157 24 313, 315. See also Nb-Ti entries Niobium compounds Niobium metal analytical methods for, 27 142-144 dissolution methods for, 27 142 economic aspects of, 27 140-142 effect on stainless steel corrosion resistance, 7 809... [Pg.621]

Hafnium is used in control rods for nuclear reactors. It has high resistance to radiation and also very high corrosion resistance. Another major application is in alloys with other refractory metals, such as, tungsten, niobium and tantalum. [Pg.330]

Niobium is a very important metal in both ferrous and nonferrous metallurgy. As an additive to alloys or when alloyed with other metals niobium imparts high mechanical strength, high electrical conductivity, and ductihty to alloys. It enhances corrosion resistance of most alloys. The metal and several of its alloys exhibit superconductivity. Nobium is used as an additive in... [Pg.627]

Corrosion Resistance of Tantalum and Niobium Metals, NRC Inc., Bulletin No. 3000. [Pg.446]


See other pages where Niobium corrosion resistance is mentioned: [Pg.344]    [Pg.344]    [Pg.347]    [Pg.126]    [Pg.128]    [Pg.137]    [Pg.7]    [Pg.7]    [Pg.26]    [Pg.26]    [Pg.40]    [Pg.47]    [Pg.433]    [Pg.2448]    [Pg.956]    [Pg.469]    [Pg.642]    [Pg.783]    [Pg.883]    [Pg.905]    [Pg.96]    [Pg.343]    [Pg.31]    [Pg.169]    [Pg.331]    [Pg.40]   
See also in sourсe #XX -- [ Pg.5 , Pg.26 ]

See also in sourсe #XX -- [ Pg.5 , Pg.26 ]

See also in sourсe #XX -- [ Pg.344 ]




SEARCH



Corrosion resistance

Niobium resistance

© 2024 chempedia.info