Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel 374 Subject

General corrosion damage was the cause of failure of an A1 alloy welded pipe assembly in an aircraft bowser which was attacked by a deicing-fluid — water mixture at small weld defects . Selective attack has been reported in welded cupro-nickel subjected to estuarine and seawater environments . It was the consequence of the combination of alloy element segregation in the weld metal and the action of sulphate reducing bacteria (SRB). Sulphide-coated Cu-enriched areas were cathodic relative to the adjacent Ni-rich areas where, in the latter, the sulphides were being continuously removed by the turbulence. Sulphite ions seemed to act as a mild inhibitor. [Pg.101]

N.A. Krasilnikov, Z. Pakiela, W. Lojkowski, R.Z. Valiev, Grain refinement and mechanical properties of nickel subjected to severe plastic deformation, in Interfacial Effects and Novel Properties of Nanomaterials, eds. by W. Lojkowski, J.R. Blizzard (Trans Tech Publications Ltd., Zurich-Uetikon, 2003)... [Pg.454]

Metals can be precipitated from the Hquid or gas phase. For example, nickel ammonium carbonate gives nickel powder when subjected to hydrogen in an autoclave. Copper, cobalt, molybdenum, and titanium powders can also be formed by precipitation. [Pg.182]

An important item in this array of matenals is the class known as maraging steels. This group of high nickel martensitic steels contain so Htde carbon that they are often referred to as carbon-free iron—nickel martensites (54). Carbon-free iron—nickel martensite with certain alloying elements is relatively soft and ductile and becomes hard, strong, and tough when subjected to an aging treatment at around 480°C. [Pg.400]

The metal parts of the injection molder, ie, the liner, torpedo, and nozzle, that contact the hot molten resin must be of the noncatalytic type to prevent accelerated decomposition of the polymer. In addition, they must be resistant to corrosion by HCl. Iron, copper, and zinc are catalytic to the decomposition and caimot be used, even as components of alloys. Magnesium is noncatalytic but is subject to corrosive attack, as is chromium when used as plating. Nickel alloys such as Duranickel, HasteUoy B, and HasteUoy C are recommended as constmction materials for injection-molding metal parts. These and pure nickel are noncatalytic and corrosion-resistant however, pure nickel is rather soft and is not recommended. [Pg.440]

The process by which porous sintered plaques are filled with active material is called impregnation. The plaques are submerged in an aqueous solution, which is sometimes a hot melt in a compound s own water of hydration, consisting of a suitable nickel or cadmium salt and subjected to a chemical, electrochemical, or thermal process to precipitate nickel hydroxide or cadmium hydroxide. The electrochemical (46) and general (47) methods of impregnating nickel plaques have been reviewed. [Pg.548]

Materials of Construction. GeneraHy, carbon steel is satisfactory as a material of construction when handling propylene, chlorine, HCl, and chlorinated hydrocarbons at low temperatures (below 100°C) in the absence of water. Nickel-based aHoys are chiefly used in the reaction area where resistance to chlorine and HCl at elevated temperatures is required (39). Elastomer-lined equipment, usuaHy PTFE or Kynar, is typicaHy used when water and HCl or chlorine are present together, such as adsorption of HCl in water, since corrosion of most metals is excessive. Stainless steels are to be avoided in locations exposed to inorganic chlorides, as stainless steels can be subject to chloride stress-corrosion cracking. Contact with aluminum should be avoided under aH circumstances because of potential undesirable reactivity problems. [Pg.34]

Isothiazoles are reductively desulfurized by Raney nickel, e.g. as in Scheme 31 (72AHC(l4)l). 1,2,5-Thiadiazoles are subject to reductive cleavage by zinc in acid, sodium in alcohol, or Raney nickel, e.g. Scheme 32 (68AHC(9)107). [Pg.75]

Aluminum is not embrittled by low temperatures and is not subject to external corrosion when exposed to normal atmospheres. At 200°C (400°F) its strength is less than half that at room temperature. It is attacked by alkahes, by traces of copper, nickel, mercuiy, and other heaw-metal ions, and by prolonged contact with wet insiilation. It suffers from galvanic corrosion when coupled to copper, nickel, or lead-... [Pg.971]

Metals in the platinum family are recognized for their ability to promote combustion at lowtemperatures. Other catalysts include various oxides of copper, chromium, vanadium, nickel, and cobalt. These catalysts are subject to poisoning, particularly from halogens, halogen and sulfur compounds, zinc, arsenic, lead, mercury, and particulates. It is therefore important that catalyst surfaces be clean and active to ensure optimum performance. [Pg.2190]

Carbon steels heated for prolonged periods at temperatures above 455°C (8.50°F) may be subject to the segregation of carbon, which is transformed into graphite. When this occurs, the structural strength of the steel will be affected. Killed steels or low-alloy steels of chromium and molybdenum or chromium and nickel should be considered for elevated-temperature seivices. [Pg.2420]

Eigelstein, H. C., and E. N. Skinner. The Effect of Composition on the Scaling of Iron-Chromium-Nickel Alloys Subjected to Cyclic Temperature Conditions, ASTM, STP No. 165 (1954). [Pg.143]

A good catalyst is also stable. It must not deactivate at the high temperature levels (1300 to 1400°F) experienced in regenerators. It must also be resistant to contamination. While all catalysts are subject to contamination by certain metals, such as nickel, vanadium, and iron in extremely minute amounts, some are affected much more than others. While metal contaminants deactivate the catalyst slightly, this is not serious. The really important effect of the metals is that they destroy a catalyst s selectivity. The hydrogen and coke yields go up very rapidly, and the gasoline yield goes down. While Zeolite catalysts are not as sensitive to metals as 3A catalysts, they are more sensitive to the carbon level on the catalyst than 3A. Since all commercial catalysts are contaminated to some extent, it has been necessary to set up a measure that will reflect just how badly they are contaminated. [Pg.16]

A number of ferrites have been subjected to shock modification and studied with x-ray diffraction as well as static magnetization and Mossbauer spectroscopy [87V01], Studies were carried out on cobalt, nickel, and copper ferrites as well as magnetite (iron ferrite). [Pg.170]

Perfluoroalkyl or -aryl halides undergo oxidative addition with metal vapors to form nonsolvated fluonnated organometallic halides and this topic has been die subject of a review [289] Pentafluorophenyl halides react with Rieke nickel, cobalt, and iron to give bispentafluorophenylmetal compounds, which can be isolated in good yields as liquid complexes [290] Rieke nickel can also be used to promote the reaction of pentafluorophenyl halides with acid halides [297] (equation 193)... [Pg.718]

The production of cobalt is usually subsidiary to that of copper or nickel and the methods employed differ widely, depending on which of these it is associated with. In general the ore is subjected to appropriate roasting treatment so as to remove gangue material as a slag and produce a speiss of mixed metal and oxides. In the case of arsenical ores, AS2O6 is condensed and provides a valuable byproduct. In the case of copper ores, the primary process... [Pg.1114]

The mechanism by which this low oxidation state is stabilized for this triad has been the subject of some debate. That it is not straightforward is clear from the fact that, in contrast to nickel, palladium and platinum require the presence of phosphines for the formation of stable carbonyls. For most transition metals the TT-acceptor properties of the ligand are thought to be of considerable importance and there is... [Pg.1166]

Pure piperitone was subjected to the action of purified hydrogen, in the presence of a nickel catalyst, for six hours, the temperature ranging between 175° to 180° C. The double bond in piperitone was readily opened out with the formation of menthone, but further action of the hydrogen under these conditions did not reduce the carbonyl group, even after continued treatment for two days. Under correct conditions, however, the reduction to menthol should take place. The ease with which menthone is formed in this way is of special interest, not only in connection with the production of this ketone, but also as a stage in the manufacture of menthol. [Pg.240]

Nickel is usually alloyed with elements including copper, chromium, molybdenum and then for strengthening and to improve corrosion resistance for specific applications. Nickel-copper alloys (and copper-nickel alloys see Section 53.5.4) are widely used for handling water. Pumps and valve bodies for fresh water, seawater and mildly acidic alkaline conditions are made from cast Ni-30% Cu type alloys. The wrought material is used for shafts and stems. In seawater contaminated with sulfide, these alloys are subject to pitting and corrosion fatigue. Ammonia contamination creates corrosion problems as for commercially pure nickel. [Pg.906]


See other pages where Nickel 374 Subject is mentioned: [Pg.268]    [Pg.35]    [Pg.439]    [Pg.347]    [Pg.347]    [Pg.319]    [Pg.122]    [Pg.155]    [Pg.303]    [Pg.430]    [Pg.554]    [Pg.513]    [Pg.108]    [Pg.371]    [Pg.211]    [Pg.212]    [Pg.2114]    [Pg.284]    [Pg.218]    [Pg.199]    [Pg.480]    [Pg.60]    [Pg.75]    [Pg.165]    [Pg.1146]    [Pg.1488]    [Pg.235]    [Pg.147]    [Pg.237]    [Pg.699]    [Pg.761]   


SEARCH



Nickel bromide 566 Subject

Nickel complexes Subject

Nickel olefin complexes 212 Subject

Raney nickel Subject

Subject nickel-mediated

© 2024 chempedia.info