Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel silica supported

This paper describes the catalytic activity of nickel phosphide supported on silica, alumina, and carbon-coated alumina in the hydrodesulfurization of 4,6-dimethyldibenzothiophene. The catalysts are made by the reduction of phosphate precursors. On the silica support the phosphate is reduced easily to form nickel phosphide with hi catalytic activity, but on the alumina support interactions between the phosphate and the alumina hinder the reduction. The addition of a carbon overlayer on alumina decreases the interactions and leads to the formation of an active phosphide phase. [Pg.357]

An apparent particle size effect for the hydrodechlorination of 2-chlorophenol and 2,4-dichlorophenol was observed by Keane et al. [147], Investigating silica supported Ni catalysts (derived from either nickel nitrate or nickel ethane-diamine) with particles in the size range between 1.4 and 16.8 nm, enhanced rates for both reactions were observed with increased size over the full range (Figure 13). As electronic factors can be ruled out in this dimension, the observed behavior is traced back to some sort of ensemble effect, known from CFC transformations over Pd/Al203... [Pg.177]

Figure 2.20. Transformation of silica supported dinitrosyl complexes of nickel(II) leading to formation of nitrogen dioxide and its final stabilization on the support. The picture shows the molecular structure and the spin density contours calculated with BP/DNP method of the involved species, and evolution of the X-band EPR spectra of the NiN02 Si02 complex due to spillover of the ligand (adopted from [71]). Figure 2.20. Transformation of silica supported dinitrosyl complexes of nickel(II) leading to formation of nitrogen dioxide and its final stabilization on the support. The picture shows the molecular structure and the spin density contours calculated with BP/DNP method of the involved species, and evolution of the X-band EPR spectra of the NiN02 Si02 complex due to spillover of the ligand (adopted from [71]).
A new isomerization catalyst can be prepared by the modification of silica-supported nickel with tetrabutyltin. This catalyst is capable of the selective isomerization of 3-carene to 2-carene.269... [Pg.273]

Other metals on silica supports have been investigated less extensively than platinum and nickel, and average particle diameters have only been estimated by gas adsorption methods, supported in a few cases by X-ray line broadening data. Thus, rhodium, iridium, osmium, and ruthenium (44, 45) and palladium (46) have all been prepared with average metal particle diameters <40 A or so, after hydrogen reduction at 400°-500°C. [Pg.11]

The work of Kikuchi et al. (123) with silica-supported catalysts also shows the high tendency of iron (370°-400°C), cobalt (330o-360°C) and nickel (330°-370°C) to catalyze fragmentation (of n-pentane) to methane. This work also showed that with cobalt and nickel, the extent of methane formation tended to decrease with increasing hydrogen partial pressure. Some data are listed in Table XII. [Pg.66]

Fig. 2. (a) Magnetization-volume isotherms for the chemisorption of hydrogen and of benzene on kieselguhr-supported nickel at 150° C (16). (b) Average number of bonds formed by benzene adsorbed on nickel-silica as a function of temperature (17). From J. Amer. Chem. Soc. 79, 4637 (1957) 83, 1033 (1961). Copyright by the American Chemical Society. Reprinted by permission of copyright owner. [Pg.129]

In the cracking of benzene to acetylene over alumina- and silica-supported nickel catalysts it was observed that the selectivity of the reaction, expressed as the ethyne/ ethene ratio, was dramatically affected (from 1 9 to 9 1) by controlling the micro-wave energy input (i. e. 90% selectivity) [83]. [Pg.361]

Alstrup, I. and Tavares, T., Kinetics of carbon formation from CH4-H2 on silica-supported nickel and Ni-Cu catalysts, /. Catal., 139, 513,1993. [Pg.99]

Some nickel catalysts supported on phosphinated silica were shown to be superior to their homogeneous analogs (224). [Pg.235]

Common catalyst compositions include oxides of chromium or molybdenum, or cobalt and nickel metals, supported on silica, alumina, titania, zirconia, or activated carbon. [Pg.265]

Recently, silica supported nickel-boron catalyst was tested in the hydrogenation of cyclopentadiene and was found to be selective in giving cyclopentene47. [Pg.998]

The newest and most commercially successful process involves vapor phase oxidation of propylene to AA followed by esterification to the acrylate of your choice. Chemical grade propylene (90—95% purity) is premixed with steam and oxygen and then reacted at 650—700°F and 60—70 psi over a molybdate-cobait or nickel metal oxide catalyst on a silica support to give acrolein (CH2=CH-CHO), an intermediate oxidation product on the way to AA. Other catalysts based on cobalt-molybdenum vanadium oxides are sometimes used for the acrolein oxidation step. [Pg.285]

Sachtler s group (73) and Yasumori (64) studied the IR spectra of silica-supported Ni modified with amino acid and 2-hydroxy acid and the XPS of TA-MRNi. Both authors deduced almost the same model as proposed by Suetaka. Recently Sachtler s group proposed other models as shown in Fig. 22 from results obtained in enantio-differentiating hydrogenations of MAA with nickel catalysts modified with nickel and copper tartrates (74). The nickel tartrate adsorbs at the vacant coordination site of nickel in this model. [Pg.252]

Recently Pliskin and Eischens (167) have observed bands at 4.74 and 4.86 y for hydrogen chemisorbed on alumina-supported platinum. These are associated with weakly and strongly bonded H atoms, respectively, and it is suggested that the former are adsorbed on single surface Pt atoms while the latter are adsorbed by interaction with two Pt atoms. No evidence was found for adsorbed molecular species such as Hj and no absorption bands could be detected for hydrogen chemisorbed on silica-supported nickel. [Pg.370]

Nickel, on the other hand, on alumina and on silica supports was found to have only five nearby sulfurs (square pyramidal) with Ni-Mo coordination numbers from 1 to 1.5. Ni-Mo-S supported on carbon was observed to have Ni-S coordination numbers of 6 in a trigonal-prismatic configuration. In addition, Ni (at low Ni concentrations) was found to have one nearby Ni, which could indicate that, in some catalysts, Ni is present as pairs on the MoS2 surface. The overall structure of the Ni-Mo-S was believed to be similar to that of millerite (i.e., Ni is located in the center of the MoS edge in a square-pyramidal configuration, with one sulfur extending perpendicular to the surface) (62-64). [Pg.398]

The co-existence of at least two modes of ethylene adsorption has been clearly demonstrated in studies of 14C-ethylene adsorption on nickel films [62] and various alumina- and silica-supported metals [53,63—65] at ambient temperature and above. When 14C-ethylene is adsorbed on to alumina-supported palladium, platinum, ruthenium, rhodium, nickel and iridium catalysts [63], it is observed that only a fraction of the initially adsorbed ethylene can be removed by molecular exchange with non-radioactive ethylene, by evacuation or during the subsequent hydrogenation of ethylene—hydrogen mixtures (Fig. 6). While the adsorptive capacity of the catalysts decreases in the order Ni > Rh > Ru > Ir > Pt > Pd, the percentage of the initially adsorbed ethylene retained by the surface which was the same for each of the processes, decreased in the order... [Pg.19]

Acetylene, when adsorbed on active nickel catalysts, undergoes self-hy-drogenation with the production of ethylene [91], although the extent of this process is less than with ethylene. Similar behaviour has been observed with alumina- and silica-supported palladium and rhodium [53], although with both of these metals ethane is the sole self-hydrogenation product some typical results for rhodium—silica are shown in Fig. 21. [Pg.50]

Infrared spectra of acetylene adsorbed on silica-supported nickel, palladium and platinum [149] in the absence of hydrogen show bands ascrib-able to an olefinic species (J)... [Pg.52]

Khulbe and Mann [155] have obtained infrared spectra of allene adsorbed on silica-supported cobalt, nickel, palladium, platinum and rhodium. The spectra were similar for all the metals, although variations in band intensity from metal to metal were observed. Addition of hydrogen to the allene-precovered surface resulted in similar spectra to those found for chemisorbed and hydrogenated propene in which the surface species was thought to be an adsorbed prop-1-yl group. The authors concluded that the initial allene spectrum was consistent with the adsorbed species being a 1 2-di-o-bonded allene (structure K)... [Pg.53]

Throughout these studies, no product other than propane was observed. However, subsequent studies by Sinfelt et al. [249—251] using silica-supported Group VIII metals (Co, Ni, Cu, Ru, Os, Rh, Ir, Pd and Pt) have shown that, in addition to hydrogenation, hydrocracking to ethane and methane occurs with cobalt, nickel, ruthenium and osmium, but not with the other metals studied. From the metal surface areas determined by hydrogen and carbon monoxide chemisorption, the specific activities of... [Pg.100]


See other pages where Nickel silica supported is mentioned: [Pg.538]    [Pg.825]    [Pg.11]    [Pg.60]    [Pg.61]    [Pg.62]    [Pg.74]    [Pg.128]    [Pg.129]    [Pg.130]    [Pg.140]    [Pg.151]    [Pg.114]    [Pg.82]    [Pg.363]    [Pg.502]    [Pg.190]    [Pg.340]    [Pg.74]    [Pg.18]    [Pg.241]    [Pg.261]    [Pg.346]    [Pg.347]    [Pg.18]    [Pg.23]    [Pg.52]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Nickel catalyst, silica-supported

Nickel-silica

Silica support

Supported nickel

© 2024 chempedia.info