Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel, hydrocarbons reaction

Other catalytic hydrocarbon reactions indude decomposition of olefins over a powdered nickel catalyst [84], hydrogenation of alkenes, hydrocracking of cycloalk-enes, and water-gas shift reactions [64]. [Pg.361]

Halides and tosylates----> hydrocarbons. Reaction with Raney nickel in alkaline... [Pg.366]

This review is followed by a consideration of some of the features characteristic of hydrocarbon reactions on catalysts comprising individual metals from Groups VIII and IB of the periodic table. Finally, the activities of a series of unsupported nickel-copper alloys for hydrogenolysis and dehydrogenation reactions are discussed. These latter studies were made to obtain information on the selectivity phenomenon with bimetallic catalysts of known structure. The nickel-copper alloys were characterized by a variety of chemical and physical probes. [Pg.9]

Carbon can exist on the metal surfaces of nickel catalysts in a variety of forms. Hydrocarbon exposure to nickel crystallites at elevated temperature (> 700 K) can rapidly produce a mass of long-growing carbon filaments (1, 2) as identified in numerous experiments analyzed by transmission electron microscopy (TEM). Yet very reactive forms of surface carbon can exist, since carbon atoms chemisorbed on nickel surfaces apparently play a central role in the mechanism of several nickel-catalyzed reactions, such as hydrocarbon synthesis, (3, U, 5) hydrocarbon steam reforming, (6, 7) and hydrogenolysis (8). [Pg.253]

The catalytic carboxylation of unsaturated hydrocarbons with CO2 to a,P-unsaturated carboxylates (i.e., acrylates) has been a topic of academic as well as industrial research for three decades, since seminal work of Hoberg and Yamamoto in the early 1980s. Although Hoberg et al. reported the catalytic nickel-catalyzed reaction of alkenes and iso-... [Pg.177]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

Direct hydrohquefaction of biomass or wastes can be achieved by direct hydrogenation of wood chips on treatment at 10,132 kPa and 340 to 350°C with water and Raney nickel catalyst (45). The wood is completely converted to an oily Hquid, methane, and other hydrocarbon gases. Batch reaction times of 4 hours give oil yields of about 35 wt % of the feed the oil contains about 12 wt % oxygen and has a heating value of about 37.2 MJ /kg (16,000 Btu/lb). Distillation yields a significant fraction that boils in the same range as diesel fuel and is completely miscible with it. [Pg.26]

The second reaction is called the Fischer-Tropsch synthesis of hydrocarbons. Depending on the conditions and catalysts, a wide range of hydrocarbons from very light materials up to heavy waxes can be produced. Catalysts for the Fischer-Tropsch reaction iaclude iron, cobalt, nickel, and mthenium. Reaction temperatures range from about 150 to 350°C reaction pressures range from 0.1 to tens of MPa (1 to several hundred atm) (77). The Fischer-Tropsch process was developed iadustriaHy under the designation of the Synthol process by the M. W. Kellogg Co. from 1940 to 1960 (83). [Pg.416]

Naphtha desulfurization is conducted in the vapor phase as described for natural gas. Raw naphtha is preheated and vaporized in a separate furnace. If the sulfur content of the naphtha is very high, after Co—Mo hydrotreating, the naphtha is condensed, H2S is stripped out, and the residual H2S is adsorbed on ZnO. The primary reformer operates at conditions similar to those used with natural gas feed. The nickel catalyst, however, requires a promoter such as potassium in order to avoid carbon deposition at the practical levels of steam-to-carbon ratios of 3.5—5.0. Deposition of carbon from hydrocarbons cracking on the particles of the catalyst reduces the activity of the catalyst for the reforming and results in local uneven heating of the reformer tubes because the firing heat is not removed by the reforming reaction. [Pg.420]

Tubular Fixed-Bed Reactors. Bundles of downflow reactor tubes filled with catalyst and surrounded by heat-transfer media are tubular fixed-bed reactors. Such reactors are used most notably in steam reforming and phthaUc anhydride manufacture. Steam reforming is the reaction of light hydrocarbons, preferably natural gas or naphthas, with steam over a nickel-supported catalyst to form synthesis gas, which is primarily and CO with some CO2 and CH. Additional conversion to the primary products can be obtained by iron oxide-catalyzed water gas shift reactions, but these are carried out ia large-diameter, fixed-bed reactors rather than ia small-diameter tubes (65). The physical arrangement of a multitubular steam reformer ia a box-shaped furnace has been described (1). [Pg.525]

Materials of Construction. GeneraHy, carbon steel is satisfactory as a material of construction when handling propylene, chlorine, HCl, and chlorinated hydrocarbons at low temperatures (below 100°C) in the absence of water. Nickel-based aHoys are chiefly used in the reaction area where resistance to chlorine and HCl at elevated temperatures is required (39). Elastomer-lined equipment, usuaHy PTFE or Kynar, is typicaHy used when water and HCl or chlorine are present together, such as adsorption of HCl in water, since corrosion of most metals is excessive. Stainless steels are to be avoided in locations exposed to inorganic chlorides, as stainless steels can be subject to chloride stress-corrosion cracking. Contact with aluminum should be avoided under aH circumstances because of potential undesirable reactivity problems. [Pg.34]

Two techniques, electrochemical reduction (section IIl-C) and Clem-mensen reduction (section ITI-D), have previously been recommended for the direct reduction of isolated ketones to hydrocarbons. Since the applicability of these methods is limited to compounds which can withstand strongly acidic reaction conditions or to cases where isotope scrambling is not a problem, it is desirable to provide milder alternative procedures. Two of the methods discussed in this section, desulfurization of mercaptal derivatives with deuterated Raney nickel (section IV-A) and metal deuteride reduction of tosylhydrazone derivatives (section IV-B), permit the replacement of a carbonyl oxygen by deuterium under neutral or alkaline conditions. [Pg.171]

The Institut Fran ais du Petrole has developed and commercialized a process, named Dimersol X, based on a homogeneous catalyst, which selectively produces dimers from butenes. The low-branching octenes produced are good starting materials for isononanol production. This process is catalyzed by a system based on a nickel(II) salt, soluble in a paraffinic hydrocarbon, activated with an alkylalumini-um chloride derivative directly inside the dimerization reactor. The reaction is sec-... [Pg.271]

The reaction takes place at low temperature (40-60 °C), without any solvent, in two (or more, up to four) well-mixed reactors in series. The pressure is sufficient to maintain the reactants in the liquid phase (no gas phase). Mixing and heat removal are ensured by an external circulation loop. The two components of the catalytic system are injected separately into this reaction loop with precise flow control. The residence time could be between 5 and 10 hours. At the output of the reaction section, the effluent containing the catalyst is chemically neutralized and the catalyst residue is separated from the products by aqueous washing. The catalyst components are not recycled. Unconverted olefin and inert hydrocarbons are separated from the octenes by distillation columns. The catalytic system is sensitive to impurities that can coordinate strongly to the nickel metal center or can react with the alkylaluminium derivative (polyunsaturated hydrocarbons and polar compounds such as water). [Pg.272]

It was shown in laboratory studies that methanation activity increases with increasing nickel content of the catalyst but decreases with increasing catalyst particle size. Increasing the steam-to-gas ratio of the feed gas results in increased carbon monoxide shift conversion but does not affect the rate of methanation. Trace impurities in the process gas such as H2S and HCl poison the catalyst. The poisoning mechanism differs because the sulfur remains on the catalyst while the chloride does not. Hydrocarbons at low concentrations do not affect methanation activity significantly, and they reform into methane at higher levels, hydrocarbons inhibit methanation and can result in carbon deposition. A pore diffusion kinetic system was adopted which correlates the laboratory data and defines the rate of reaction. [Pg.56]


See other pages where Nickel, hydrocarbons reaction is mentioned: [Pg.855]    [Pg.86]    [Pg.257]    [Pg.373]    [Pg.184]    [Pg.309]    [Pg.737]    [Pg.666]    [Pg.483]    [Pg.555]    [Pg.354]    [Pg.455]    [Pg.7]    [Pg.746]    [Pg.197]    [Pg.185]    [Pg.419]    [Pg.28]    [Pg.259]    [Pg.81]    [Pg.164]    [Pg.128]    [Pg.522]    [Pg.174]    [Pg.209]    [Pg.119]    [Pg.158]    [Pg.634]    [Pg.7]    [Pg.267]    [Pg.63]    [Pg.423]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Hydrocarbons, reactions

Nickel, hydrocarbons

Reaction nickel

© 2024 chempedia.info