Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel alloyed with gold

Gold-copper alloys exhibit exceptional resistance to corrosion, and have very low vapour pressures. Gold-nickel alloys, with similar low vapour pressure, are somewhat stronger than gold-copper at high temperatures. Both series of alloys are widely employed in vacuum systems. [Pg.937]

Hardy and Linnett (59) studied the heterogeneous recombination of atomic hydrogen at room temperature on nickel and nickel alloy foils. They did not find any similarity to the behavior of palladium and its alloys with gold studied earlier (35). There was no evidence that, as a result of exposure to atomic hydrogen, hydride was formed in any metal catalyst investigated with a resulting change in the activity of the initial parent metal catalysts. [Pg.273]

Nickel and iron salts. Attacks by aqua regia, fused nitrates, cyanides, chlorides at >1000°C. Alloys with gold, silver, and other metals Fused samples contaminated with the metal rhodium to increase hardness. Platinum cmcibles for fusions and treatment with HF Ni and Fe crucibles used for peroxide fusions... [Pg.23]

In this paper, the performanees of laser-ultrasound are estimated in order to identify lacks of weld penetration. The laser-ultrasonic technique is applied to cylindrical metallic strucmres (few mm thick) in a single-sided control. The results obtained for different materials (gold-nickel alloy and tantalum) are presented by B-sean views for which the control configuration is discussed with regard to the thermal effects at the laser impact. This testing is performed for different lacks of weld penetration (up to 0.5 mm for a thickness of 2 mm) even in the presence of the weld bead, which corresponds to an actual industrial problem. [Pg.693]

This paper deals with the control of weld depth penetration for cylinders in gold-nickel alloy and tantalum. After introducing the experimental set-up and the samples description, the study and the optimization of the testing are presented for single-sided measurements either in a pulse-echo configuration or when the pump and the probe laser beams are shifted (influence of a thermal phenomenon), and for different kind of laser impact (a line or a circular spot). First, the ultrasonic system is used to detect and to size a flat bottom hole in an aluminium plate. Indeed, when the width of the hole is reduced, its shape is nearly similar to the one of a slot. Then, the optimization is accomplished for... [Pg.693]

Then, the weld depths penetration are controlled in a pulse-echo configuration because the weld bead (of width 2 mm) disturbs the detection when the pump and the probe beams are shifted of 2.2 mm. The results are presented in figure 8 (identical experimental parameters as in figure 7). The slow propagation velocities for gold-nickel alloy involve that the thermal component does not overlap the ultrasonic components, in particular for the echo due to the interaction with a lack of weld penetration. The acoustic response (V shape) is still well observed both for the slot of height 1.7 mm and for a weld depth penetration of 0.8 mm (lack of weld penetration of 1.7 mm), even with the weld bead. This is hopeful with regard to the difficulties encountered by conventional ultrasound in the case of the weld depths penetration. [Pg.698]

Rubidium metal alloys with the other alkaU metals, the alkaline-earth metals, antimony, bismuth, gold, and mercury. Rubidium forms double haUde salts with antimony, bismuth, cadmium, cobalt, copper, iron, lead, manganese, mercury, nickel, thorium, and 2iac. These complexes are generally water iasoluble and not hygroscopic. The soluble mbidium compounds are acetate, bromide, carbonate, chloride, chromate, fluoride, formate, hydroxide, iodide. [Pg.278]

Palladium and Palladium Alloys. Palladium is used in telephone equipment and in electronics appHcations as a substitute for gold in specific areas. Palladium is plated from ammoniacal and acid baths available along with chelated variations as proprietary processes. One typical alkaline bath uses 8 g/L diammine-dinitropalladium, 100 g/L ammonium nitrate, and 10 g/L sodium nitrite. The pH is adjusted to 9—10 using ammonium hydroxide, and the bath is operated at 100 A/m at 50° C. If ammonium sulfamate, 100 g/L, is used in some baths to replace the nitrate and sodium nitrite salts, the bath is mn at lower temperature, 25—35°C, and a pH of 7.5—8.5. A palladium—nickel alloy, 75% Pd, is plated from a bath having 6 g/L palladium from the same salt, 3 g/L nickel from nickel sulfamate concentrate, and 90 g/L ammonium hydroxide. The bath is operated at 20—40°C with 50-100 A/m/... [Pg.163]

The development of new alloys in new fields for example the development of molybdenum and tungsten with iron, cobalt or nickel for coating of dies and nozzles, or the development of palladium-nickel alloy as an alternative to gold for connectors. [Pg.377]

In order that the possibility of contamination of catalysts with traces of oxides could be eliminated Campbell and Emmett (51) studied the catalytic activity of metallic films of nickel and its alloys with copper or gold. They were deposited under a high vacuum and then sintered (alloys also homogenized) in hydrogen at 5 cm Hg pressure at 350°C or 500°C. The films were subsequently allowed to cool to room temperature and only... [Pg.270]

Gold occurs as an alloy with copper, nickel and platinum group metals. Typically contains low amount of gold... [Pg.3]

Diffusion barriers are coatings that serve in that role specifically, protection against undesirable diffusion. One of the best examples is that of a 100- tm-thick electrode-posited copper layer that serves as an effective barrier against the diffusion of carbon. Another example is that of nickel and nickel alloys (notably, electrolessly deposited Ni-P) that block diffusion of copper into and through gold overplate. This is achieved by the deposition of a relatively thin Ni-P layer (less than 1 /mm) between the copper and its overlayer. Naturally, the effectiveness of the diffusion barrier increases with its thickness. Other factors in the effectiveness of a diffusion barrier... [Pg.313]

Low force/low voltage separable connectors used in computers, and other electronic devices, are typically plated with gold or palladium over a barrier layer of nickel. The tail ends of these connectors, which are usually joined to the device by soldering, are plated with a tin-lead alloy, or pure tin. [Pg.167]

It should be noted that, in the interpretation of activity patterns of alloy catalysts, extreme care is needed to ensure that the surface composition is known. It has been shown [321,322] with copper—nickel alloys, which show two phases in the composition range 2—80% copper, that, within this miscibility gap, the surface composition remains constant at 80% Cu—20% Ni, independent of the nominal bulk composition. Furthermore, the surface composition may vary depending upon the catalyst pretreatment [322], No miscibility gap occurs with palladium—gold or palladium-silver alloys [323]. [Pg.108]


See other pages where Nickel alloyed with gold is mentioned: [Pg.248]    [Pg.2894]    [Pg.78]    [Pg.199]    [Pg.696]    [Pg.322]    [Pg.87]    [Pg.379]    [Pg.132]    [Pg.57]    [Pg.485]    [Pg.48]    [Pg.145]    [Pg.435]    [Pg.514]    [Pg.49]    [Pg.662]    [Pg.159]    [Pg.183]    [Pg.159]    [Pg.322]    [Pg.166]    [Pg.158]    [Pg.381]    [Pg.107]    [Pg.107]    [Pg.108]    [Pg.8]    [Pg.295]    [Pg.69]    [Pg.107]    [Pg.109]    [Pg.182]    [Pg.379]    [Pg.669]   
See also in sourсe #XX -- [ Pg.477 ]




SEARCH



Alloying nickel

Gold-nickel alloys

Nickel alloyed with

With nickel

© 2024 chempedia.info