Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nervous system acetylcholinesterase inhibition

Other additional studies or pertinent information that lend sunnort to this MRL Methyl parathion affects the nervous system by inhibiting acetylcholinesterase activity. Cholinesterase inhibition and neurological effects have been observed in humans and animals, for all exposure routes and durations (for example. Dean et al. 1984 Desi et al. 1998 EPA 1978e Gupta et al. 1985 Nemec et al. 1968 Suba 1984). [Pg.250]

There is a second type of cholinesterase called butyrylcholinesterase, pseudocholinesterase, or cholinesterase. This enzyme is present in some nonneural cells in the central and peripheral nervous systems as well as in plasma and serum, the liver, and other organs. Its physiologic function is not known, but is hypothesized to be the hydrolysis of esters ingested from plants (Lefkowitz et al. 1996). Plasma cholinesterases are also inhibited by organophosphate compounds through irreversible binding this binding can act as a detoxification mechanism as it affords some protection to acetylcholinesterase in the nervous system (Parkinson 1996 Taylor 1996). [Pg.102]

Hahn T, Ruhnke M, Luppa H. 1991. Inhibition of acetylcholinesterase and butyrylcholinesterase by the organophosphorus insecticide methyl parathion in the central nervous system of the golden hamster i Mesocricetus aumtus). Acta Histochem (Jena) 91 13-19. [Pg.211]

Furthermore, any particular type of site belonging to any one of these categories may exist in a number of different cellular or tissue locations. For example, acetylcholinesterase is located in a number of different mammalian tissues (e.g., brain, peripheral nervous system, and red blood cells), and all of these may be inhibited by... [Pg.20]

The inhibition of two cholinesterase activities in blood can also be used to confirm exposure to certain organophosphate ester compounds. Red blood cell acetylcholinesterase is the same cholinesterase found in the gray matter of the central nervous system and motor endplates of sympathetic ganglia. Synonyms for this enzyme include specific cholinesterase, true cholinesterase, and E-type cholinesterase. Plasma cholinesterase is a distinct enzyme found in intestinal mucosa, liver, plasma, and white matter of the central nervous system. Synonyms for this enzyme include nonspecific cholinesterase, pseudocholinesterase, butyrylcholinesterase, and S-type cholinesterase (Evans 1986). Nonspecific cholinesterase is thought to be a very poor indicator of neurotoxic effects. [Pg.224]

Organophosphate Ester Hydraulic Fluid. The most widely examined target of organophosphate ester hydraulic fluids is the nervous system. Two types of neurological effects have been observed following exposure to certain organophosphate ester hydraulic fluids cholinergic symptoms associated with acetylcholinesterase inhibition and delayed neuropathy (OPIDN). [Pg.226]

Exposure to disulfoton can result in inhibition of acetylcholinesterase activity, with consequent accumulation of acetylcholine at nerve synapses and ganglia leading to central nervous system, nicotinic, and muscarinic effects (see Section 2.2.1.4 for more extensive discussion). [Pg.76]

Disulfoton causes neurological effects in humans and animals. The mechanism of action on the nervous system depends on the metabolism of disulfoton to active metabolites. The liver is the major site of metabolic oxidation of disulfoton to disulfoton sulfoxide, disulfoton sulfone, demeton S-sulfoxide and demeton S-sulfone, which inhibit acetylcholinesterase in nervous tissue. These four active metabolites are more potent inhibitors of acetylcholinesterase than disulfoton. Cytochrome P-450 monooxygenase and flavin adenine dinucleotide monooxygenase are involved in this metabolic activation. The active metabolites ultimately undergo nonenzymatic and/or enzymatic hydrolysis to more polar metabolites that are not toxic and are excreted in the urine. [Pg.90]

Perhaps the most prominent and well-studied class of synthetic poisons are so-called cholinesterase inhibitors. Cholinesterases are important enzymes that act on compounds involved in nerve impulse transmission - the neurotransmitters (see the later section on neurotoxicity for more details). A compound called acetylcholine is one such neurotransmitter, and its concentration at certain junctions in the nervous system, and between the nervous system and the muscles, is controlled by the enzyme acetylcholinesterase the enzyme causes its conversion, by hydrolysis, to inactive products. Any chemical that can interact with acetylcholinesterase and inhibit its enzymatic activity can cause the level of acetylcholine at these critical junctions to increase, and lead to excessive neurological stimulation at these cholinergic junctions. Typical early symptoms of cholinergic poisoning are bradycardia (slowing of heart rate), diarrhea, excessive urination, lacrimation, and salivation (all symptoms of an effect on the parasympathetic nervous system). When overstimulation occurs at the so-called neuromuscular junctions the results are tremors and, at sufficiently high doses, paralysis and death. [Pg.98]

Figure 3.3 (a) Covalent catalysis the catalytic mechanism of a serine protease. The enzyme acetylcholinesterase is chosen to illustrate the mechanism because it is an important enzyme in the nervous system. Catalysis occurs in three stages (i) binding of acetyl choline (ii) release of choline (iii) hydrolysis of acetyl group from the enzyme to produce acetate, (b) Mechanism of inhibition of serine proteases by diisopropylfluorophosphonate. See text for details. [Pg.40]

In the following example we describe the implementation of a mass spectromet-ric assay for acetylcholinesterase (AChE) [22]. AChE plays an important role in the nervous system. This enzyme rapidly hydrolyzes the active neurotransmitter acetylcholine into the inactive compounds choline and acetic acid. Amongst others, low levels of acetylcholine in the synaptic cleft are associated with Alzheimer s disease [23, 24]. Patients afflicted by this disease may benefit from inhibition of AChE activity thereby increasing ACh level. [Pg.194]

Most of the signs and symptoms resulting from diazinon poisoning are due to the inhibition of an enzyme called acetylcholinesterase in the nervous system. This enzyme is also found in your red blood cells and a similar enzyme (serum cholinesterase) is found in blood plasma. The most common test for exposure to many organophosphorus insecticides, including diazinon, is to determine the level of cholinesterase activity in the red blood cells or plasma. This test requires only a small amount of blood and is routinely available in your doctor s office. It takes time for this enzyme to completely recover to normal levels following exposure. Therefore, a valid test may be conducted a number of days following the suspected exposure. This test indicates only exposure to an insecticide of this type. It does not specifically show exposure to diazinon. [Pg.17]

Diazinon, an anticholinesterase organophosphate, inhibits acetylcholinesterase in the central and peripheral nervous system. Inhibition of acetylcholinesterase results in accumulation of acetylcholine at muscarinic and nicotinic receptors leading to peripheral and central nervous system effects. These effects... [Pg.27]

Diazinon toxicity results predominantly from the inhibition of acetylcholinesterase in the central and peripheral nervous system. The enzyme is responsible for terminating the action of the neurotransmitter, acetylcholine, in the synapse of the pre- and post-synaptic nerve endings or in the neuromuscular junction. However, the action of acetylcholine does not persist long as it is hydrolyzed by the enzyme, acetylcholinesterase, and rapidly removed. As an anticholinesterase organophosphate, diazinon inhibits acetylcholinesterase by reacting with the active site to form a stable phosphorylated complex which is incapable of destroying acetylcholine at the synaptic gutter between the pre- and post-synaptic nerve... [Pg.92]


See other pages where Nervous system acetylcholinesterase inhibition is mentioned: [Pg.579]    [Pg.762]    [Pg.822]    [Pg.533]    [Pg.33]    [Pg.80]    [Pg.102]    [Pg.108]    [Pg.114]    [Pg.141]    [Pg.250]    [Pg.308]    [Pg.309]    [Pg.287]    [Pg.1144]    [Pg.57]    [Pg.78]    [Pg.92]    [Pg.62]    [Pg.181]    [Pg.181]    [Pg.3]    [Pg.371]    [Pg.330]    [Pg.186]    [Pg.966]    [Pg.295]    [Pg.75]    [Pg.81]    [Pg.157]    [Pg.966]    [Pg.1219]    [Pg.67]    [Pg.93]    [Pg.94]    [Pg.100]   
See also in sourсe #XX -- [ Pg.122 , Pg.123 , Pg.124 , Pg.125 , Pg.126 ]




SEARCH



Acetylcholinesterase

Acetylcholinesterase, inhibition

Acetylcholinesterases

Central nervous system receptors, acetylcholinesterase inhibition

© 2024 chempedia.info