Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nebulizer electrospray nebulization

A solution of an analyte in a solvent can be sprayed (nebulized) from an electrically charged narrow tube to give small electrically charged droplets that desorb solvent molecules to leave ions of the analyte. This atmospheric-pressure ionization is known in various forms, the one most relevant to this section being called electrospray. For additional detail, see Chapters 8, 9, and 11. [Pg.65]

The nebulization and evaporation processes used for the particle-beam interface have closely similar parallels with atmospheric-pressure ionization (API), thermospray (TS), plasmaspray (PS), and electrospray (ES) combined inlet/ionization systems (see Chapters 8, 9, and 11). In all of these systems, a stream of liquid, usually but not necessarily from an HPLC column, is first nebulized... [Pg.79]

Aerosols can be produced as a spray of droplets by various means. A good example of a nebulizer is the common household hair spray, which produces fine droplets of a solution of hair lacquer by using a gas to blow the lacquer solution through a fine nozzle so that it emerges as a spray of small droplets. In use, the droplets strike the hair and settle, and the solvent evaporates to leave behind the nonvolatile lacquer. For mass spectrometry, a spray of a solution of analyte can be produced similarly or by a wide variety of other methods, many of which are discussed here. Chapters 8 ( Electrospray Ionization ) and 11 ( Thermospray and Plasmaspray Interfaces ) also contain details of droplet evaporation and formation of ions that are relevant to the discussion in this chapter. Aerosols are also produced by laser ablation for more information on this topic, see Chapters 17 and 18. [Pg.138]

The term nebulizer is used generally as a description for any spraying device, such as the hair spray mentioned above. It is normally applied to any means of forming an aerosol spray in which a volume of liquid is broken into a mist of vapor and small droplets and possibly even solid matter. There is a variety of nebulizer designs for transporting a solution of analyte in droplet form to a plasma torch in ICP/MS and to the inlet/ionization sources used in electrospray and mass spectrometry (ES/MS) and atmospheric-pressure chemical ionization and mass spectrometry (APCI/MS). [Pg.138]

Many designs of nebulizer are commonly used in ICP/MS, but their construction and mode of operation can be collated into a small number of groups pneumatic, ultrasonic, thermospray, APCI, and electrospray. These different types are discussed in the following sections, which are followed by further sections on spray and desolvation chambers. [Pg.139]

Nebulizers are used to introduce analyte solutions as an aerosol spray into a mass spectrometer. For use with plasma torches, it is necessary to produce a fine spray and to remove as much solvent as possible before the aerosol reaches the flame of the torch. Various designs of nebulizer are available, but most work on the principle of interacting gas and liquid streams or the use of ultrasonic devices to cause droplet formation. For nebulization applications in thermospray, APCI, and electrospray, see Chapters 8 and 11. [Pg.152]

A sample to be examined by electrospray is passed as a solution in a solvent (made up separately or issuing from a liquid chromatographic column) through a capillary tube held at high electrical potential, so the solution emerges as a spray or mist of small droplets (i.e., it is nebulized). As the droplets evaporate, residual sample ions are extracted into a mass spectrometer for analysis. [Pg.390]

Another big advance in the appHcation of ms in biotechnology was the development of atmospheric pressure ionization (API) techniques. There are three variants of API sources, a heated nebulizer plus a corona discharge for ionization (APCl) (51), electrospray (ESI) (52), and ion spray (53). In the APCl interface, the Ic eluent is converted into droplets by pneumatic nebulization, and then a sheath gas sweeps the droplets through a heated tube that vaporizes the solvent and analyte. The corona discharge ionizes solvent molecules, which protonate the analyte. Ions transfer into the mass spectrometer through a transfer line which is cryopumped, to keep a reasonable source pressure. [Pg.547]

These solutions are not always practicable and HPLC flow rates of up to 2 mlmin may be accommodated directly by the use of electrospray in conjunction with pneumatically assisted nebulization (the combination is also known as lonspray ) and/or a heated source inlet. The former is accomplished experimentally by using a probe that provides a flow of gas concentrically to the mobile phase stream, as shown in Figure 4.8, which aids the formation of droplets from the bulk liquid, and will allow a flow rate of around 200 p. min to be used. [Pg.160]

Factors may be classified as quantitative when they take particular values, e.g. concentration or temperature, or qualitative when their presence or absence is of interest. As mentioned previously, for an LC-MS experiment the factors could include the composition of the mobile phase employed, its pH and flow rate [3], the nature and concentration of any mobile-phase additive, e.g. buffer or ion-pair reagent, the make-up of the solution in which the sample is injected [4], the ionization technique, spray voltage for electrospray, nebulizer temperature for APCI, nebulizing gas pressure, mass spectrometer source temperature, cone voltage in the mass spectrometer source, and the nature and pressure of gas in the collision cell if MS-MS is employed. For quantification, the assessment of results is likely to be on the basis of the selectivity and sensitivity of the analysis, i.e. the chromatographic separation and the maximum production of molecular species or product ions if MS-MS is employed. [Pg.189]

Figure 4.8 Schematic of an electrospray probe with a concentric flow of nebulizing gas. From applications literature published by Micromass UK Ltd, Manchester, UK, and reproduced with permission. Figure 4.8 Schematic of an electrospray probe with a concentric flow of nebulizing gas. From applications literature published by Micromass UK Ltd, Manchester, UK, and reproduced with permission.
Ionspray Pneumatically assisted electrospray - a process in which nebulizing gas is used in conjunction with a high voltage to form droplets from a liquid stream. [Pg.251]

Solutes were tentatively identified by atmospheric pressure ionization (API)-electrospray-mass selective detector (gas temperature 350°C, flow rate 101/min, nebulizer pressure 30 psi, quadrupole temperature 30°C, capillary voltage 3 500 V). [Pg.165]

Fig. 3.38.The IUPAC names of Sudan azo dyes are as follows Sudan 1 = 1— [(2,4-dimethylphenyl)azo]-2-naphtalenol Sudan II = l-(phenylazo)-2-naphtol Sudan III = l-(4-phenylazophenylazo)-2-naphtol Sudan IV = o-tolyazo-o-tolyazo-beta-naphtol and Disperse Orange 13 = 4-[4-(phenylazo)-l-naphtylazo]-phenol. Azo dyes were separated in an ODS column (250 x 2.1 mm i.d. particle size 5 /xm) at 35°C. The isocratic mobile phase consisted of 0.1 per cent formic acid in methanol-0.1 per cent formic acid in water (97 3, v/v). The flow rate was 200 /xl/min. MS conditions were nebulizing and desolvation gas were nitrogen at the flow rates of 50 and 5551/h, respectively electrospray voltage, 3.0 kV cone voltage 25 V source temperature, 110°C desolvation temperature, 110°C. Azo dyes were extracted from the samples by homogenizing 1 g of sample with 10 ml of acetone, then the suspension was centrifuged and an aliquot of 3 ml of supernatant was mixed with 1 ml of deionized water, filtered and used for analysis. LC-ESI-MS/Ms SRM traces of standards and spiked samples are listed in Fig. 3.39. It was found that the detection and quantitation limits depended on both the chemical structure of the dye and the character of the accompanying matrix. LOD and LOQ values in chilli tomato sauce... Fig. 3.38.The IUPAC names of Sudan azo dyes are as follows Sudan 1 = 1— [(2,4-dimethylphenyl)azo]-2-naphtalenol Sudan II = l-(phenylazo)-2-naphtol Sudan III = l-(4-phenylazophenylazo)-2-naphtol Sudan IV = o-tolyazo-o-tolyazo-beta-naphtol and Disperse Orange 13 = 4-[4-(phenylazo)-l-naphtylazo]-phenol. Azo dyes were separated in an ODS column (250 x 2.1 mm i.d. particle size 5 /xm) at 35°C. The isocratic mobile phase consisted of 0.1 per cent formic acid in methanol-0.1 per cent formic acid in water (97 3, v/v). The flow rate was 200 /xl/min. MS conditions were nebulizing and desolvation gas were nitrogen at the flow rates of 50 and 5551/h, respectively electrospray voltage, 3.0 kV cone voltage 25 V source temperature, 110°C desolvation temperature, 110°C. Azo dyes were extracted from the samples by homogenizing 1 g of sample with 10 ml of acetone, then the suspension was centrifuged and an aliquot of 3 ml of supernatant was mixed with 1 ml of deionized water, filtered and used for analysis. LC-ESI-MS/Ms SRM traces of standards and spiked samples are listed in Fig. 3.39. It was found that the detection and quantitation limits depended on both the chemical structure of the dye and the character of the accompanying matrix. LOD and LOQ values in chilli tomato sauce...
Fig. 11.4. Different sprayers for ESI. (a) Pure electrospray, (b) ESI with sheath liquid, (c) pneumatically assisted ESI, and (d) ultrasonic nebulizer. Adapted from Ref. [5] (p. 109) by permission. John Wiley Sons, Inc. 1997. Fig. 11.4. Different sprayers for ESI. (a) Pure electrospray, (b) ESI with sheath liquid, (c) pneumatically assisted ESI, and (d) ultrasonic nebulizer. Adapted from Ref. [5] (p. 109) by permission. John Wiley Sons, Inc. 1997.
HPLC-mass spectrometry (MS). MS conditions ionization mode, atmospheric pressure ionization-electrospray (API-ES) polarity, positive Vcap, 4000 V nebulizer pressure, 35 psig drying gas, 10 L min gas temperature, 350 °C fragmentor, 70 V scan range, 120-600 atm. [Pg.166]

Nilsson, S. L., Bylund, D., Joernten-Karlsson, M., Petersson, P., and Markides, K. E. (2004). A chemometric study of active parameters and their interaction effects in a nebulized sheath-liquid electrospray interface for capillary electrophoresis-mass spectrometry. Electrophoresis 25, 2100-2107. [Pg.502]

Fig. 1.15 Desorption electrospray ionization interface. The sample, in this case a pharmaceutical pill, is placed in front of the orifice and is hit by nebulized droplets. Desorbed ions are then sampled into the mass spectrometer. Fig. 1.15 Desorption electrospray ionization interface. The sample, in this case a pharmaceutical pill, is placed in front of the orifice and is hit by nebulized droplets. Desorbed ions are then sampled into the mass spectrometer.
Nebulizing gas (usually nitrogen) hows concentrically around the capillary, which shears droplets off as the liquid hows out of the end of the capillary. In the older literature, authors distinguish between pure electrospray without nebulizing gas and pneumatically assisted electrospray or ionspray. This is because of the mechanistic difference between the way the primary droplets form. Since all commercially available instruments allow the use of nebulizing gas, it is just a question of how rate as to whether it makes sense or not. [Pg.340]

Appropriate modifications of the capillary allow the nebulization at flow rates lower than 1 pL/ min (nano and micro electrospray). As reported in Table 8.1, the electrospray can be successfully used at different flow rates, accomplishing hyphenation with LC and CE. [Pg.239]

In IC-MS systems, the core of the equipment is the interface. In fact, inside the interface evaporation of the liquid, ionization of neutral species to charged species and removal of a huge amount of mobile phase to keep the vacuum conditions required from the mass analyzer take place. Two main interfaces are used coupled to IC, namely electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). In the ESI mode, ions are produced by evaporation of charged droplets obtained through spraying and an electrical field, whilst in the APCI mode the spray created by a pneumatic nebulizer is directed towards a heated region (400°C-550°C) in which desolvation and vaporization take place. The eluent vapors are ionized by the corona effect (the partial discharge... [Pg.409]


See other pages where Nebulizer electrospray nebulization is mentioned: [Pg.56]    [Pg.60]    [Pg.107]    [Pg.150]    [Pg.150]    [Pg.151]    [Pg.547]    [Pg.183]    [Pg.307]    [Pg.830]    [Pg.1148]    [Pg.492]    [Pg.60]    [Pg.306]    [Pg.163]    [Pg.125]    [Pg.128]    [Pg.53]    [Pg.468]    [Pg.481]    [Pg.14]    [Pg.92]    [Pg.340]    [Pg.20]    [Pg.156]   
See also in sourсe #XX -- [ Pg.150 ]




SEARCH



Electrospray Nebulization (EN)

Electrospray interface nebulization

Nebulization

Nebulizations

Nebulizer

© 2024 chempedia.info