Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural spectrum

Eorkmann, G., Elavonoids as flower pigments the formation of the natural spectrum and its extension by genetic engineering, Plant Breeding, 106, 1, 1991. [Pg.435]

In many cases the continuum may have structures that are narrower than the bandwidth of the pulse. Such structures may be due to either the natural spectrum of the molecular Hamiltonian [327, 328] or to the interaction with the strong external field [195, 197-199, 329]. Under such circumstances we expect the SVCA approximation to break down, yielding nonmonotonic decay dynamics. [Pg.223]

Once quantum chemistry has provided all the information required, that is, rotational and centrifugal distortion constants and, if the case, hyperfine parameters as well as line intensities, a graphical simulation of the rotational spectrum can be performed. The latter requires the knowledge of the experimental technique involved. For example, if the frequency modulation with second harmonic detection is performed, then the second derivative of the natural spectrum is obtained (as seen in Figure 6.2). The graphical representation of the computed spectrum can then be... [Pg.283]

A particular attention must be given to the examination of spectra, because they can be an error source. The magnetic spectrum presence is very important, because it conditions the testing sanction. Generally we proceed to an identification of the real defect nature which has lead to the formation of the spectrum... [Pg.638]

We used the concept of sound velocity dispersion for explanation of the shift of pulse energy spectrum maximum, transmitted through the medium, and correlation of the shift value with function of medium heterogeneity. This approach gives the possibility of mathematical simulation of the influence of both medium parameters and ultrasonic field parameters on the nature of acoustic waves propagation in a given medium. [Pg.734]

Dennison coupling produces a pattern in the spectrum that is very distinctly different from the pattern of a pure nonnal modes Hamiltonian , without coupling, such as (Al.2,7 ). Then, when we look at the classical Hamiltonian corresponding to the Darling-Deimison quantum fitting Hamiltonian, we will subject it to the mathematical tool of bifiircation analysis [M]- From this, we will infer a dramatic birth in bifiircations of new natural motions of the molecule, i.e. local modes. This will be directly coimected with the distinctive quantum spectral pattern of the polyads. Some aspects of the pattern can be accounted for by the classical bifiircation analysis while others give evidence of intrinsically non-classical effects in the quantum dynamics. [Pg.67]

The actual line shape in a spectrum is a convolution of the natural Lorentzian shape with the Doppler shape. It must be calculated for a given case as there is no simple fomuila for it. It is quite typical in electronic... [Pg.1144]

A8, which leads to D, = 1/(2A8). The factor of two arises because a minimum of two data points per period are needed to sample a sinusoidal wavefonn. Naturally, the broadband light source will detennine the actual content of the spectrum, but it is important that the step size be small enough to acconunodate the highest frequency components of the source, otherwise they... [Pg.1167]

Spectroscopy, or the study of the interaction of light with matter, has become one of the major tools of the natural and physical sciences during this century. As the wavelength of the radiation is varied across the electromagnetic spectrum, characteristic properties of atoms, molecules, liquids and solids are probed. In the... [Pg.1232]

Figure Bl.4.9. Top rotation-tunnelling hyperfine structure in one of the flipping inodes of (020)3 near 3 THz. The small splittings seen in the Q-branch transitions are induced by the bound-free hydrogen atom tiiimelling by the water monomers. Bottom the low-frequency torsional mode structure of the water duner spectrum, includmg a detailed comparison of theoretical calculations of the dynamics with those observed experimentally [ ]. The symbols next to the arrows depict the parallel (A k= 0) versus perpendicular (A = 1) nature of the selection rules in the pseudorotation manifold. Figure Bl.4.9. Top rotation-tunnelling hyperfine structure in one of the flipping inodes of (020)3 near 3 THz. The small splittings seen in the Q-branch transitions are induced by the bound-free hydrogen atom tiiimelling by the water monomers. Bottom the low-frequency torsional mode structure of the water duner spectrum, includmg a detailed comparison of theoretical calculations of the dynamics with those observed experimentally [ ]. The symbols next to the arrows depict the parallel (A k= 0) versus perpendicular (A = 1) nature of the selection rules in the pseudorotation manifold.
Figure Bl.25.9(a) shows the positive SIMS spectrum of a silica-supported zirconium oxide catalyst precursor, freshly prepared by a condensation reaction between zirconium ethoxide and the hydroxyl groups of the support [17]. Note the simultaneous occurrence of single ions (Ff, Si, Zr and molecular ions (SiO, SiOFf, ZrO, ZrOFf, ZrtK. Also, the isotope pattern of zirconium is clearly visible. Isotopes are important in the identification of peaks, because all peak intensity ratios must agree with the natural abundance. In addition to the peaks expected from zirconia on silica mounted on an indium foil, the spectrum in figure Bl. 25.9(a)... Figure Bl.25.9(a) shows the positive SIMS spectrum of a silica-supported zirconium oxide catalyst precursor, freshly prepared by a condensation reaction between zirconium ethoxide and the hydroxyl groups of the support [17]. Note the simultaneous occurrence of single ions (Ff, Si, Zr and molecular ions (SiO, SiOFf, ZrO, ZrOFf, ZrtK. Also, the isotope pattern of zirconium is clearly visible. Isotopes are important in the identification of peaks, because all peak intensity ratios must agree with the natural abundance. In addition to the peaks expected from zirconia on silica mounted on an indium foil, the spectrum in figure Bl. 25.9(a)...
As mentioned, we also carried out IR studies (a fast vibrational spectroscopy) early in our work on carbocations. In our studies of the norbornyl cation we obtained Raman spectra as well, although at the time it was not possible to theoretically calculate the spectra. Comparison with model compounds (the 2-norbornyl system and nortri-cyclane, respectively) indicated the symmetrical, bridged nature of the ion. In recent years, Sunko and Schleyer were able, using the since-developed Fourier transform-infrared (FT-IR) method, to obtain the spectrum of the norbornyl cation and to compare it with the theoretically calculated one. Again, it was rewarding that their data were in excellent accord with our earlier work. [Pg.143]

At first, the dimeric nature of the base isolated from 3-ethyl-2-methyl-4-phenylthiazolium was postulated via a chemical route. Indeed the adduct of ICH, on a similar 2-ethylidene base is a 2-isopropylthiazolium salt in the case of methylene base it is an anilinovinyl compound identified by its absorption spectrum and chemical reactivity (45-47). This dimeric structure of the molecule has been definitively established by its NMR spectrum. It is very similar to the base issued from 2.3-dimethyl-benzo thiazolium (48). It corresponds to 2-(3 -ethyl-4 -phenyl-2 -methylenethiazolinilydene)2-methyl-3-ethyl-4-phenylthiazoline (13). There is only one methyl signal (62 = 2.59), and two series of signals (63= 1.36-3.90, 63= 1.12-3.78) correspond to ethyl groups. Three protons attributed to positions T,5,5 are shifted to a lower field 5.93, 6.58, and 8.36 ppm. The bulk of the ten phenyl protons is at 7.3 ppm (Scheme 22). [Pg.39]

IS the only phosphorus isotope present at natural abundance and has a nuclear spin of The H NMR spectrum of tnmethyl phosphite (CH30)3P exhibits a doublet for the methyl protons with a splitting of 12 Hz... [Pg.580]

A more recent experimental technique employs C as the isotopic label Instead of locating the position of a label by a laborious degradation procedure the NMR spectrum of the natural product is recorded The signals for the carbons that are enriched m are far more intense than those corresponding to carbons m which IS present only at the natural abundance level... [Pg.1092]

Another feature of the spectrum shown in Figure 10.19 is the narrow width of the absorption lines, which is a consequence of the fixed difference in energy between the ground and excited states. Natural line widths for atomic absorption, which are governed by the uncertainty principle, are approximately 10 nm. Other contributions to broadening increase this line width to approximately 10 nm. [Pg.384]

Neodymium and YAG Lasers. The principle of neodymium and YAG lasers is very similar to that of the ruby laser. Neodymium ions (Nd +) are used in place of Cr + and are often distributed in glass rather than in alumina. The light from the neodymium laser has a wavelength of 1060 nm (1.06 xm) it emits in the infrared region of the electromagnetic spectrum. Yttrium (Y) ions in alumina (A) compose a form of the naturally occurring garnet (G), hence the name, YAG laser. Like the ruby laser, the Nd and YAG lasers operate from three- and four-level excited-state processes. [Pg.134]

In a process similar to that described in the previous item, the stored data can be used to identify not just a series of compounds but specific ones. For example, any compound containing a chlorine atom is obvious from its mass spectrum, since natural chlorine occurs as two isotopes, Cl and Cl, in a ratio of. 3 1. Thus its mass spectrum will have two molecular ions separated by two mass units (35 -i- 2 = 37) in an abundance ratio of 3 1. It becomes a trivial exercise for the computer to print out only those scans in which two ions are found separated by two mass units in the abundance ratio of 3 1 (Figure 36.10). This selection of only certain ion masses is called selected ion recording (SIR) or, sometimes, selected ion monitoring (SIM, an unfortunate... [Pg.259]

Naturally occurring isotopes of any element are present in unequal amounts. For example, chlorine exists in two isotopic forms, one with 17 protons and 18 neutrons ( Cl) and the other with 17 protons and 20 neutrons ( Cl). The isotopes are not radioactive, and they occur, respectively, in a ratio of nearly 3 1. In a mass spectrum, any compound containing one chlorine atom will have two different molecular masses (m/z values). For example, methyl chloride (CH3CI) has masses of 15 (for the CH3) plus 35 (total = 50) for one isotope of chlorine and 15 plus 37 (total = 52) for the other isotope. Since the isotopes occur in the ratio of 3 1, molecular ions of methyl chloride will show two molecular-mass peaks at m/z values of 50 and 52, with the heights of the peaks in the ratio of 3 1 (Figure 46.4). [Pg.339]

A diagrammatic illustration of the effect of an isotope pattern on a mass spectrum. The two naturally occurring isotopes of chlorine combine with a methyl group to give methyl chloride. Statistically, because their abundance ratio is 3 1, three Cl isotope atoms combine for each Cl atom. Thus, the ratio of the molecular ion peaks at m/z 50, 52 found for methyl chloride in its mass spectrum will also be in the ratio of 3 1. If nothing had been known about the structure of this compound, the appearance in its mass spectrum of two peaks at m/z 50, 52 (two mass units apart) in a ratio of 3 1 would immediately identify the compound as containing chlorine. [Pg.340]

Isotopes of an element are formed by the protons in its nucleus combining with various numbers of neutrons. Most natural isotopes are not radioactive, and the approximate pattern of peaks they give in a mass spectrum can be used to identify the presence of many elements. The ratio of abundances of isotopes for any one element, when measured accurately, can be used for a variety of analytical purposes, such as dating geological samples or gaining insights into chemical reaction mechanisms. [Pg.341]


See other pages where Natural spectrum is mentioned: [Pg.90]    [Pg.1045]    [Pg.1048]    [Pg.1359]    [Pg.403]    [Pg.191]    [Pg.191]    [Pg.90]    [Pg.1045]    [Pg.1048]    [Pg.1359]    [Pg.403]    [Pg.191]    [Pg.191]    [Pg.282]    [Pg.889]    [Pg.418]    [Pg.248]    [Pg.1475]    [Pg.1578]    [Pg.1844]    [Pg.2093]    [Pg.444]    [Pg.529]    [Pg.1144]    [Pg.143]    [Pg.49]    [Pg.563]    [Pg.26]    [Pg.16]    [Pg.17]    [Pg.31]    [Pg.33]    [Pg.322]   
See also in sourсe #XX -- [ Pg.312 ]




SEARCH



C NMR Spectra of Natural Products

Light, nature electromagnetic spectrum

Natural product libraries spectra

Natural rubber FTIR spectra

Natural rubber spectra

Nature of the observed tunneling spectra

Spectra of some important naturally occurring chromophores

Spectrum of natural rubber

© 2024 chempedia.info