Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Natural products, polyketide synthases

Chalcone synthase (CHS), the first plant natural product polyketide synthase (PKS) to be characterized at the molecular level (39), catalyzes the condensation of 4-coumaroyl-CoA with three molecules of malonyl-CoA to afford naringenin chalcone, a precursor of the major classes of plant flavonoids. The cloning of a novel type III pentaketide chromone synthase (PCS) from aloe (Aloe arborescens, Liliaceae) rich in aromatic polyketides, especially quinones such as aloe-emodin and emodin, resulted in... [Pg.489]

Until recently no enzymes able to produce olivetol-like compounds have been isolated. In an article by Puna et al., polyketide III enzymes were responsible for the formation of phenohc lipid compound [34], a natural product group that ohvetol belongs to. Although the biosynthesized compounds contained a longer chain, which increased over time, the study supported the hypothesis of olivetohc acid production by a polyketide III synthase. Further studies on the genetic and protein level are essential to elucidate the mode of mechanism by which olivetohc acid is formed in C. sativa. [Pg.10]

McDaniel, R., Thamchaipenet, A., Gustafsson, C. et al. (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel unnatural natural products. Proceedings of the National Academy of Sciences of the United States of America, 96, 1846. [Pg.259]

In this chapter, we will introduce an exciting class of natural product biosynthetic enzymes, the modular synthases, as well as their associated enzyme partners. We will discuss the use of metabolic engineering as a tool for small-molecule discovery and development, both through directed fermentation and combinatorial biosynthesis. In addition, we will review six classes of partner enzymes involved in the modification of polyketide (PK) and nonribosomal peptide (NRP) natural products. We believe that these enzymatic transformations hold great opportunities for synthetic chemists and will serve as the foundation for a new trend in both discovery and process chemistry. [Pg.288]

Moore, B.S. and Hertweck, C. (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Natural Product Reports, 19 (1), 70-99. [Pg.315]

Recently, a new polyketide biosynthetic pathway in bacteria that parallels the well studied plant PKSs has been discovered that can assemble small aromatic metabolites.8,9 These type III PKSs10 are members of the chalcone synthase (CHS) and stilbene synthase (STS) family of PKSs previously thought to be restricted to plants.11 The best studied type III PKS is CHS. Physiologically, CHS catalyzes the biosynthesis of 4,2, 4, 6 -tetrahydroxychalcone (chalcone). Moreover, in some organisms CHS works in concert with chalcone reductase (CHR) to produce 4,2 ,4 -trihydroxychalcone (deoxychalcone) (Fig. 12.1). Both natural products constitute plant secondary metabolites that are used as precursors for the biosynthesis of anthocyanin pigments, anti-microbial phytoalexins, and chemical inducers of Rhizobium nodulation genes.12... [Pg.198]

SCHRODER, J., The chalcone/stilbene synthase-type family of condensing enzymes. In Comprehensive Natural Products Chemistry, vol. 1, Polyketides and Other Secondary Metabolites Including Fatty Acids and Their Derivatives (U. Sankawa ed.), Elsevier, Amersterdam, 1999, pp. 749-771. [Pg.219]

The second largest class of compounds reported from macroalgae is the polyketides, which comprise approximately a quarter of known algal compounds (Blunt et al. 2007). Polyketides are polymers of acetate (C2) and occasionally propionate (C3) and are very similar to fatty acids in their biosynthetic origin. Polyketides can be found in plants, animals, bacteria, and fungi. With a range of activities as broad as their structures, the polyketides are a diverse family of natural products classified based upon the polyketide synthases (PKSs) responsible for their biosynthesis, primarily type I and type II. [Pg.10]

The Polyketide Pathway One metabolic process that has received much attention from natural product chemists is the production of secondary metabolites via polyketide synthase (PKS) enzymes. Polyketide synthases condense small starting... [Pg.135]

PKSs are characterized by their ability to catalyze the formation of polyketide chains from the sequential condensation of acetate units from malonate thioesters. In plants they produce a range of natural products with varied in vivo and pharmacological properties. PKSs of particular note include acridone synthase, bibenzyl synthase, 2-pyrone synthase, and stilbene synthase (STS). STS forms resveratrol, a plant defense compound of much interest with regard to human health. STS shares high sequence identity with CHS, and is considered to have evolved from CHS more than once. ° Knowledge of the molecular structure of the CHS-like enzymes has allowed direct engineering of CHS and STS to alter their catalytic activities, including the number of condensations carried out (reviewed in Refs. 46, 51, 52). These reviews also present extensive, and superbly illustrated, discussions of CHS enzyme structure and reaction mechanism. [Pg.155]

The biosynthesis of many hydroxylated natural products proceeds through regio- and enantioselective modification of polyketides, which are assembled through chain elongation via acetate or propionate units [2]. The enzymes responsible for the chain elongation and subsequent reduction, elimination, aromatiza-tion, and further modifications are classified as polyketide synthases [3]. These multifunctional enzymes have been used for whole-cell biotransformation toward unnatural metabolites that are within the scope of combinatorial biosynthesis... [Pg.386]

Motivated by the value of these natural products, there has been much research focused on developing guidelines for engineering polyketide synthases to generate natural and novel polyketides [445,446], Additionally, manipulation of the biosynthetic pathways of microbial polyketides through engineering permits the biosynthesis of bioactive polyketides not generated naturally [447,448],... [Pg.725]

Richardson M and Khosla C (1999) Structure, function, and engineering of bacterial polyketide synthases. Comprehensive Natural Products Chemistry, Vol 1. Elsevier, Amsterdam, pp 473-494. [Pg.120]

Enzymes called polyketide synthases catalyze a series of Claisen-type reactions to generate many useful natural products, such as the antibiotic erythromycin (page 1025). These enzymes use thioesters instead of the oxygen esters. [Pg.1072]

A multifunctional biosynthetic machinery mediates the synthesis of these complex natural products from acetyl- and propionyl-coenzyme A [3). In the case of type I polyketide-synthases, the )8-oxo-esters made by polycondcnsa-tion steps are modified for example by reduction or dehydration after the chain elongation. Additional specific enzymatic transformations, e.g. oxidations and glycosylations, usually take place after the decoupling at the completed macrocyclic ring framework [1,3],... [Pg.343]

McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Ashley G (1999) Multiple Genetic Modifications of the Erythromycin Polyketide Synthase to Produce a Library of Novel Unnatural Natural Products. Proc Natl Acad Sci USA 96 1846... [Pg.234]

Cell-free systems capable of in vitro synthesis of 6-methylsalicylic acid (6-MS A) and a related tetraketide, orsellinic acid, were developed long before the advent of recombinant DNA technologies in the field of natural product biosynthesis [113-115] (Fig. 5). Since then, the biosynthetic mechanisms and molecular recognition features of 6-methylsalicylic acid synthase (6-MSAS) have been extensively studied. 6-MSAS initiates synthesis with an acetyl group derived from acetyl Co A, extends the polyketide chain to a tetraketide via three decar-boxylative condensations of malonyl CoA-derived extender units, and uses NADPH to specifically reduce one of resulting carbonyls to a hydroxyl group. In its natural producer, Penicillium patulum, the product, 6-MSA is subsequently glycosylated to form the antibiotic patulin [116]. [Pg.102]

Marine natural products of the pederin class (mycalamides, onnamides, and theopederins) isolated from sponges are mixed biogenesis metabolites of polyketide synthase and nonribosomal synthase (1). In fact, biosynthesis gene clusters of this class have been cloned recently using metagenomic techniques from the marine sponge Theonella swinhoei (6). These compounds are... [Pg.1158]

Many important therapeutics, in use in clinics today, are biosynthesized by the nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) paradigm. For example, many of the antibiotics (penicillin, cephalosporin, vancomycin, erythromycin, etc.), immunosuppressors (cyclosporine, rapamycin), antiviral agents (luzopeptin A), antitumor agents (bleomycin), and toxins (thaxtomin) are NRPS and PKS derived.20-22 Figure 1 displays a small selection of natural products that are NRPS and PKS derived and illustrates the diversity of molecular structures generated by these biosynthetic paradigms. [Pg.390]


See other pages where Natural products, polyketide synthases is mentioned: [Pg.170]    [Pg.247]    [Pg.218]    [Pg.621]    [Pg.626]    [Pg.646]    [Pg.508]    [Pg.137]    [Pg.69]    [Pg.421]    [Pg.151]    [Pg.186]    [Pg.45]    [Pg.397]    [Pg.400]    [Pg.402]    [Pg.418]    [Pg.650]    [Pg.48]    [Pg.430]    [Pg.300]    [Pg.212]    [Pg.220]    [Pg.85]    [Pg.179]    [Pg.1202]    [Pg.1523]    [Pg.1526]   
See also in sourсe #XX -- [ Pg.142 ]




SEARCH



Natural products polyketide

Polyketide

Polyketide synthase

Polyketide synthases

Polyketides

© 2024 chempedia.info