Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uniform multiple developments

An improved technique has been developed to separate those compounds that are separated only slightly even when using the best technique. It is called multiple development. Although it requires more time, a much better separation can be obtained and the sample spot is more uniform, so quantitative measurements are easier to make. [Pg.263]

Variational methods - theoretically the variational approach offers the most powerful procedure for the generation of a computational grid subject to a multiplicity of constraints such as smoothness, uniformity, adaptivity, etc. which cannot be achieved using the simpler algebraic or differential techniques. However, the development of practical variational mesh generation techniques is complicated and a universally applicable procedure is not yet available. [Pg.195]

The two procedures primarily used for continuous nitration are the semicontinuous method developed by Bofors-Nobel Chematur of Sweden and the continuous method of Hercules Powder Co. in the United States. The latter process, which uses a multiple cascade system for nitration and a continuous wringing operation, increases safety, reduces the personnel involved, provides a substantial reduction in pollutants, and increases the uniformity of the product. The cellulose is automatically and continuously fed into the first of a series of pots at a controlled rate. It falls into the slurry of acid and nitrocellulose and is submerged immediately by a turbine-type agitator. The acid is deflvered to the pots from tanks at a rate controlled by appropriate instmmentation based on the desired acid to cellulose ratio. The slurry flows successively by gravity from the first to the last of the nitration vessels through under- and overflow weirs to ensure adequate retention time during nitration. The overflow from the last pot is fully nitrated cellulose. [Pg.14]

Performance Data for Direct-Heat Tray Dryers A standard two-truck diyer is illustrated in Fig. 12-48. Adjustable baffles or a perforated distribution plate is normally employed to develop 0.3 to 1.3 cm of water-pressure drop at the wall through which air enters the truck enclosure. This will enhance the uniformity of air distribution, from top to bottom, among the trays. In three (or more) truck ovens, air-reheat coils may be placed between trucks if the evaporative load is high. Means for reversing air-flow direction may also be provided in multiple-truck units. [Pg.1192]

Since most polymers, including elastomers, are immiscible with each other, their blends undergo phase separation with poor adhesion between the matrix and dispersed phase. The properties of such blends are often poorer than the individual components. At the same time, it is often desired to combine the process and performance characteristics of two or more polymers, to develop industrially useful products. This is accomplished by compatibilizing the blend, either by adding a third component, called compatibilizer, or by chemically or mechanically enhancing the interaction of the two-component polymers. The ultimate objective is to develop a morphology that will allow smooth stress transfer from one phase to the other and allow the product to resist failure under multiple stresses. In case of elastomer blends, compatibilization is especially useful to aid uniform distribution of fillers, curatives, and plasticizers to obtain a morphologically and mechanically sound product. Compatibilization of elastomeric blends is accomplished in two ways, mechanically and chemically. [Pg.299]

Frequency-selective REDOR (fsREDOR) is a very powerful technique developed for the study of 13C and 15N uniformly labeled peptides or proteins [92]. The basic idea of this technique is to combine REDOR and soft n pulses to recouple a selected 13C-15N dipole-dipole interaction in a multiple-spin system. Usually one could use Gaussian shaped pulses to achieve the required selective n inversions. Other band selective shaped pulses have been developed for a more uniform excitation profile [93]. In its original implementation, fsREDOR was used to extract the intemuclear distances of several model crystalline compounds [92], In the past few years, this technique has proven to be very useful for the study of amyloid fibrils as well. For the Ure2p10 39 fibril samples containing 13C and 15N uniformly... [Pg.60]

Besides homogeneous and uniform SAMs or polymer brushes, systems of tailored heterogeneity such as mixed monolayers of two or more compounds, gradients, block copolymer brushes etc. are now under investigation. Especially, the development of patterned surfaces offers the exciting possibility to perform multiple parallel experiments on a single substrate or cascade reactions. [Pg.434]

Chemical reactions with autocatalytic or thermal feedback can combine with the diffusive transport of molecules to create a striking set of spatial or temporal patterns. A reactor with permeable wall across which fresh reactants can diffuse in and products diffuse out is an open system and so can support multiple stationary states and sustained oscillations. The diffusion processes mean that the stationary-state concentrations will vary with position in the reactor, giving a profile , which may show distinct banding (Fig. 1.16). Similar patterns are also predicted in some circumstances in closed vessels if stirring ceases. Then the spatial dependence can develop spontaneously from an initially uniform state, but uniformity must always return eventually as the system approaches equilibrium. [Pg.24]


See other pages where Uniform multiple developments is mentioned: [Pg.2278]    [Pg.235]    [Pg.359]    [Pg.252]    [Pg.477]    [Pg.27]    [Pg.255]    [Pg.518]    [Pg.120]    [Pg.418]    [Pg.635]    [Pg.321]    [Pg.198]    [Pg.191]    [Pg.403]    [Pg.121]    [Pg.404]    [Pg.4]    [Pg.113]    [Pg.356]    [Pg.57]    [Pg.268]    [Pg.43]    [Pg.48]    [Pg.17]    [Pg.487]    [Pg.362]    [Pg.388]    [Pg.494]    [Pg.55]    [Pg.97]    [Pg.259]    [Pg.277]    [Pg.304]    [Pg.37]    [Pg.450]    [Pg.144]    [Pg.381]    [Pg.108]    [Pg.378]   
See also in sourсe #XX -- [ Pg.120 , Pg.145 ]




SEARCH



Multiple development

© 2024 chempedia.info