Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multi examples

Figure 4-20. Quarternary examples of three types of multi-component liquid-liquid mixtures. Figure 4-20. Quarternary examples of three types of multi-component liquid-liquid mixtures.
New technology is applied to existing fields to enhance production. For example, horizontal development wells have been drilled in many mature fields to recover remaining oil, especially where the remaining oil is present in thin oil columns after the gas cap and/or aquifer have swept most of the oil. Lately, the advent of multi-lateral wells drilled with coiled tubing have provided a low cost option to produce remaining oil as well as low productivity reservoirs. [Pg.340]

Modularity problems the instrument includes many different boards which are very well made for standard applications, but it is sometimes diffieult to set up a new type of examination. For example use of multiple probe, or multi-elements probes. [Pg.276]

The temi action spectroscopy refers to those teclmiques that do not directly measure die absorption, but rather the consequence of photoabsorption. That is, there is some measurable change associated with the absorption process. There are several well known examples, such as photoionization spectroscopy [47], multi-photon ionization spectroscopy [48], photoacoustic spectroscopy [49], photoelectron spectroscopy [, 51], vibrational predissociation spectroscopy [ ] and optothemial spectroscopy [53, M]. These teclmiques have all been applied to vibrational spectroscopy, but only the last one will be discussed here. [Pg.1173]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

The expense is justified, however, when tackling polymer chains, where reconstruction of an entire chain is expressed as a succession of atomic moves of this kind [121]. The first atom is placed at random the second selected nearby (one bond length away), the third placed near the second, and so on. Each placement of an atom is given a greater chance of success by selecting from multiple locations, as just described. Biasing factors are calculated for the whole multi-atom move, forward and reverse, and used as before in the Metropolis prescription. For fiirther details see [122, 123. 124. 125]. A nice example of this teclmique is the study [126. 127] of the distribution of linear and branched chain alkanes in zeolites. [Pg.2266]

Other methods for identifying multi-dimensional reaction paths arc based on stochastic dynamics. For example, a reaction path can be found by opti-... [Pg.42]

The ideas presented above on the representation of bonding in molecular structures by electron. systems can be extended to the different t> pcs of bonding in or-ganoinetallic complexes. Such a system has not yet been fully elaborated but tire scheme is illustrated with one example, the case of multi-haptic bonds. [Pg.69]

Ferrocene (Figure 2-61a) has already been mentioned as a prime example of multi-haptic bonds, i.c, the electrons tlrat coordinate tire cyclopcntadicnyl rings with the iron atom are contained in a molecular orbital delocalized over all 11 atom centers [811, for w hich representation by a connection table having bonds between the iron atom and the five carbon atoms of cither cyclopcntadicnyl ring is totally inadequate. [Pg.69]

Analogous intei-polation procedures involving higher numbers of sampling points than the two ends used in the above example provide higher-order approximations for unknown functions over one-dimensiona elements. The method can also be extended to two- and three-dimensional elements. In general, an interpolated function over a multi-dimensional element Q is expressed as... [Pg.21]

As the number of elements in the mesh increases the sparse banded nature of the global set of equations becomes increasingly more apparent. However, as Equation (6,4) shows, unlike the one-dimensional examples given in Chapter 2, the bandwidth in the coefficient matrix in multi-dimensional problems is not constant and the main band may include zeros in its interior terms. It is of course desirable to minimize the bandwidth and, as far as possible, prevent the appearance of zeros inside the band. The order of node numbering during... [Pg.198]

Because the calculation of multi-center integrals that are inevitable for ab initio method is very difficult and time-consuming, Hyper-Chem uses Gaussian Type Orbital (GTO) for ab initio methods. In truly reflecting a atomic orbital, STO may be better than GTO, so HyperChem uses several GTOs to construct a STO. The number of GTOs depends on the basis sets. For example, in the minimum STO-3G basis set HyperChem uses three GTOs to construct a STO. [Pg.43]

For some systems a single determinant (SCFcalculation) is insufficient to describe the electronic wave function. For example, square cyclobutadiene and twisted ethylene require at least two configurations to describe their ground states. To allow several configurations to be used, a multi-electron configuration interaction technique has been implemented in HyperChem. [Pg.235]

For organometailic compounds, the situation becomes even more complicated because the presence of elements such as platinum, iron, and copper introduces more complex isotopic patterns. In a very general sense, for inorganic chemistry, as atomic number increases, the number of isotopes occurring naturally for any one element can increase considerably. An element of small atomic number, lithium, has only two natural isotopes, but tin has ten, xenon has nine, and mercury has seven isotopes. This general phenomenon should be approached with caution because, for example, yttrium of atomic mass 89 is monoisotopic, and iridium has just two natural isotopes at masses 191 and 193. Nevertheless, the occurrence and variation in patterns of multi-isotopic elements often make their mass spectrometric identification easy, as depicted for the cases of dimethylmercury and dimethylplatinum in Figure 47.4. [Pg.349]

The majority of centrifugal pumps have performance curves with the aforementioned profiles. Of course, special design pumps have curves with variations. Eor example, positive displacement pumps, multi-stage pumps, regenerative turbine type pumps, and pumps with a high specific speed (Ns) fall outside the norm. But you ll find that the standard pump curve profiles are applicable to about 95% of all pumps in the majority of industrial plants. The important thing is to become familiar with pump curves and know how to interpret the information. [Pg.85]

Figure 6 Thermodynamic cycle for multi-substate free energy calculation. System A has n substates system B has m. The free energy difference between A and B is related to the substate free energy differences through Eq. (41). A numerical example is shown in the graph (from Ref. 39), where A and B are two isomers of a surface loop of staphylococcal nuclease, related by cis-trans isomerization of proline 117. The cis trans free energy calculation took into account 20 substates for each isomer only the six or seven most stable are included in the plot. Figure 6 Thermodynamic cycle for multi-substate free energy calculation. System A has n substates system B has m. The free energy difference between A and B is related to the substate free energy differences through Eq. (41). A numerical example is shown in the graph (from Ref. 39), where A and B are two isomers of a surface loop of staphylococcal nuclease, related by cis-trans isomerization of proline 117. The cis trans free energy calculation took into account 20 substates for each isomer only the six or seven most stable are included in the plot.
The need to keep a concave temperature profile for a tubular reactor can be derived from the former multi-stage adiabatic reactor example. For this, the total catalyst volume is divided into more and more stages, keeping the flow cross-section and mass flow rate unchanged. It is not too difficult to realize that at multiple small stages and with similar small intercoolers this should become something like a cooled tubular reactor. Mathematically the requirement for a multi-stage reactor can be manipulated to a different form ... [Pg.203]

This example presents a gas with a temperature limit and is typically found in a halogen mixture. A multi-section compressor is required in accommodate the limit. This example illustrates one approach for the division of work between the sections to achieve a discharge temperature within the specified bound. [Pg.174]

As a second example, results from a TOP ERDA measurement for a multi-element sample are shown in Fig. 3.65 [3.171]. The sample consists of different metal-metal oxide layers on a boron silicate glass. The projectiles are 120-MeV Kr ions. It can be seen that many different recoil ions can be separated from the most intense line, produced by the scattered projectiles. Figure 3.66 shows the energy spectra for O and Al recoils calculated from the measured TOF spectra, together with simulated spectra using the SIMNRA code. The concentration and thickness of the O and Al layers are obtained from the simulations. [Pg.169]

Conventionally, wastes are eonsidered as being predominantly either solid, liquid or gaseous but as illustrated in Table 16.3, they may be multi-phase. Solid waste eompiises liquid slurries, sludges, thixotropie solids and solids of varying partiele sizes it may be heterogeneous. Typieal examples are given in Table 16.4. [Pg.498]

From the point of view of solute interaction with the structure of the surface, it is now very complex indeed. In contrast to the less polar or dispersive solvents, the character of the interactive surface will be modified dramatically as the concentration of the polar solvent ranges from 0 to l%w/v. However, above l%w/v, the surface will be modified more subtly, allowing a more controlled adjustment of the interactive nature of the surface It would appear that multi-layer adsorption would also be feasible. For example, the second layer of ethyl acetate might have an absorbed layer of the dispersive solvent n-heptane on it. However, any subsequent solvent layers that may be generated will be situated further and further from the silica surface and are likely to be very weakly held and sparse in nature. Under such circumstances their presence, if in fact real, may have little impact on solute retention. [Pg.98]

It is becoming common practice to have the cross-section of a plastic moulding made up of several different materials. This may be done to provide a permeation barrier whilst retaining attractive economics by having a less expensive material making up the bulk of the cross-section. To perform stress analysis in such cases, it is often convenient to convert the cross-section into an equivalent section consisting of only one material. This new section will behave in exactly the same way as the multi-layer material when the loads are applied. A very common example of this type of situation is where a solid skin and a foamed core are moulded to provide a very efficient stiffness/weight ratio. This type of situation may be analysed as follows ... [Pg.66]

The Seismic Safety Margins Research Program developed a computer code called SMACS (Seismic Methodology Analysis Chain with Statistics) for calculating the seismic responses of structures, systems, and components. This code links the seismic input as ensembles of acceleration time histories with the calculations of the soil-structure interactions, the responses of major structures, and the responses of subsystems. Since uses a multi-support approach to perform the time-history response calculations for piping subsystems, the correlations between component responses can be handled explicitly. SMACS is an example of the codes that are available for calculating seismic response for PSA purposes. [Pg.192]


See other pages where Multi examples is mentioned: [Pg.105]    [Pg.463]    [Pg.578]    [Pg.890]    [Pg.1179]    [Pg.1646]    [Pg.2222]    [Pg.2602]    [Pg.2885]    [Pg.396]    [Pg.545]    [Pg.193]    [Pg.481]    [Pg.202]    [Pg.494]    [Pg.245]    [Pg.2012]    [Pg.302]    [Pg.17]    [Pg.25]    [Pg.646]    [Pg.470]    [Pg.722]    [Pg.414]    [Pg.496]    [Pg.82]    [Pg.3]    [Pg.38]   
See also in sourсe #XX -- [ Pg.52 , Pg.53 ]




SEARCH



Atomic dimensions and an example of stability multi-diagrams

Examples Illustrating Use of Multi-mode Catalytic Reactor Models

Examples Illustrating Use of Multi-mode Homogeneous Reactor Models

Examples of multi-layers

Multi-component Reactions General Concept and Examples

Specific Examples of Multi-Step Electrode Reactions

© 2024 chempedia.info