Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monolayers natural

Hubatsch, I., Ragnarsson, E.G.E. and Artursson, P. (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nature Protocols, 2, 2111-2119. [Pg.137]

J. Aizenberg, A.J. Black, G.M. Whitesides, Control of Crystal Nucleation by Patterned Self-Assembled Monolayers , Nature, 398,495 (1999)... [Pg.134]

Aizenberg J, Black AJ, Whitesides GM (1999) Control of crystal nucleation by patterned self-assembled monolayers. Nature 398 495... [Pg.2960]

N. Vogel. R.A. Belisle, B. Hatton, T.S. Wong and J. Aizenberg. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers. Nature Communications, 4,2176 (2013). [Pg.256]

The succeeding material is broadly organized according to the types of experimental quantities measured because much of the literature is so grouped. In the next chapter spread monolayers are discussed, and in later chapters the topics of adsorption from solution and of gas adsorption are considered. Irrespective of the experimental compartmentation, the conclusions as to the nature of mobile adsorbed films, that is, their structure and equations of state, will tend to be of a general validity. Thus, only a limited discussion of Gibbs monolayers has been given here, and none of such related aspects as the contact potentials of solutions or of adsorption at liquid-liquid interfaces, as it is more efficient to treat these topics later. [Pg.92]

There is always some degree of adsorption of a gas or vapor at the solid-gas interface for vapors at pressures approaching the saturation pressure, the amount of adsorption can be quite large and may approach or exceed the point of monolayer formation. This type of adsorption, that of vapors near their saturation pressure, is called physical adsorption-, the forces responsible for it are similar in nature to those acting in condensation processes in general and may be somewhat loosely termed van der Waals forces, discussed in Chapter VII. The very large volume of literature associated with this subject is covered in some detail in Chapter XVII. [Pg.350]

Clearly, it is important that there be a large contact angle at the solid particle-solution-air interface. Some minerals, such as graphite and sulfur, are naturally hydrophobic, but even with these it has been advantageous to add materials to the system that will adsorb to give a hydrophobic film on the solid surface. (Effects can be complicated—sulfur notability oscillates with the number of preadsoibed monolayers of hydrocarbons such as n-heptane [76].) The use of surface modifiers or collectors is, of course, essential in the case of naturally hydrophilic minerals such as silica. [Pg.476]

Because of the charged nature of many Langmuir films, fairly marked effects of changing the pH of the substrate phase are often observed. An obvious case is that of the fatty-acid monolayers these will be ionized on alkaline substrates, and as a result of the repulsion between the charged polar groups, the film reverts to a gaseous or liquid expanded state at a much lower temperature than does the acid form [121]. Also, the surface potential drops since, as illustrated in Fig. XV-13, the presence of nearby counterions introduces a dipole opposite in orientation to that previously present. A similar situation is found with long-chain amines on acid substrates [122]. [Pg.557]

The effect is more than just a matter of pH. As shown in Fig. XV-14, phospholipid monolayers can be expanded at low pH values by the presence of phosphotungstate ions [123], which disrupt the stmctival order in the lipid film [124]. Uranyl ions, by contrast, contract the low-pH expanded phase presumably because of a type of counterion condensation [123]. These effects caution against using these ions as stains in electron microscopy. Clearly the nature of the counterion is very important. It is dramatically so with fatty acids that form an insoluble salt with the ion here quite low concentrations (10 M) of divalent ions lead to the formation of the metal salt unless the pH is quite low. Such films are much more condensed than the fatty-acid monolayers themselves [125-127]. [Pg.557]

Examination of these and other results indicates that the value of a for a given adsorptive which needs to be used in order to arrive at a value of specific surface consistent with that from nitrogen adsorption, varies according to the nature of the adsorbent. The existence of these variations shows that the conventional picture, in which the value of a corresponds to a monolayer which is completely filled with adsorbate molecules in a liquidlike packing, is over-simplified. Two factors can upset the simple picture (a) there may be a tendency for adsorbed molecules to become localized on lattice sites, or on more active parts of the solid surface and (b) the process... [Pg.68]

In the higher pressure sub-region, which may be extended to relative pressure up to 01 to 0-2, the enhancement of the interaction energy and of the enthalpy of adsorption is relatively small, and the increased adsorption is now the result of a cooperative effect. The nature of this secondary process may be appreciated from the simplified model of a slit in Fig. 4.33. Once a monolayer has been formed on the walls, then if molecules (1) and (2) happen to condense opposite one another, the probability that (3) will condense is increased. The increased residence time of (1), (2) and (3) will promote the condensation of (4) and of still further molecules. Because of the cooperative nature of the mechanism, the separate stages occur in such rapid succession that in effect they constitute a single process. The model is necessarily very crude and the details for any particular pore will depend on the pore geometry. [Pg.242]

The first stage in the interpretation of a physisorption isotherm is to identify the isotherm type and hence the nature of the adsorption process(es) monolayer-multilayer adsorption, capillary condensation or micropore filling. If the isotherm exhibits low-pressure hysteresis (i.e. at p/p° < 0 4, with nitrogen at 77 K) the technique should be checked to establish the degree of accuracy and reproducibility of the measurements. In certain cases it is possible to relate the hysteresis loop to the morphology of the adsorbent (e.g. a Type B loop can be associated with slit-shaped pores or platey particles). [Pg.285]

Forces of Adsorption. Adsorption may be classified as chemisorption or physical adsorption, depending on the nature of the surface forces. In physical adsorption the forces are relatively weak, involving mainly van der Waals (induced dipole—induced dipole) interactions, supplemented in many cases by electrostatic contributions from field gradient—dipole or —quadmpole interactions. By contrast, in chemisorption there is significant electron transfer, equivalent to the formation of a chemical bond between the sorbate and the soHd surface. Such interactions are both stronger and more specific than the forces of physical adsorption and are obviously limited to monolayer coverage. The differences in the general features of physical and chemisorption systems (Table 1) can be understood on the basis of this difference in the nature of the surface forces. [Pg.251]

Compared with XPS and AES, the higher surface specificity of SSIMS (1-2 mono-layers compared with 2-8 monolayers) can be useful for more precise determination of the chemistry of an outer surface. Although from details of the 01s spectrum, XPS could give the information that OH and oxide were present on a surface, and from the Cls spectrum that hydrocarbons and carbides were present, only SSIMS could be used to identify the particular hydroxide or hydrocarbons. In the growth of oxide films for different purposes (e.g. passivation or anodization), such information is valuable, because it provides a guide to the quality of the film and the nature of the growth process. [Pg.96]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Israelachvili and his colleagues have used the SEA to study the interactions between surface layers of surfactant and of other molecules representing functionalised polymer chains, adhesion promoters or additives. Typically a monolayer of the molecule concerned is deposited onto cleaved mica sheets. The values of surface energies obtained from the JKR equation (Eq. 18) throw some interesting light on the nature and roughness of surface layers in contact. [Pg.341]

In the latter the surfactant monolayer (in oil and water mixture) or bilayer (in water only) forms a periodic surface. A periodic surface is one that repeats itself under a unit translation in one, two, or three coordinate directions similarly to the periodic arrangement of atoms in regular crystals. It is still not clear, however, whether the transition between the bicontinuous microemulsion and the ordered bicontinuous cubic phases occurs in nature. When the volume fractions of oil and water are equal, one finds the cubic phases in a narrow window of surfactant concentration around 0.5 weight fraction. However, it is not known whether these phases are bicontinuous. No experimental evidence has been published that there exist bicontinuous cubic phases with the ordered surfactant monolayer, rather than bilayer, forming the periodic surface. [Pg.687]


See other pages where Monolayers natural is mentioned: [Pg.171]    [Pg.99]    [Pg.171]    [Pg.99]    [Pg.91]    [Pg.129]    [Pg.154]    [Pg.541]    [Pg.560]    [Pg.1828]    [Pg.2414]    [Pg.66]    [Pg.257]    [Pg.264]    [Pg.251]    [Pg.48]    [Pg.533]    [Pg.536]    [Pg.188]    [Pg.2]    [Pg.414]    [Pg.408]    [Pg.411]    [Pg.104]    [Pg.134]    [Pg.404]    [Pg.411]    [Pg.662]    [Pg.5]    [Pg.262]    [Pg.1175]    [Pg.36]    [Pg.96]   


SEARCH



Phenomenon and Nature of Monolayer Dispersion

© 2024 chempedia.info