Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum refractory metals

Nitrogen and carbon are the most potent solutes to obtain high strength in refractory metals (55). Particulady effective ate carbides and carbonitrides of hafnium in tungsten, niobium, and tantalum alloys, and carbides of titanium and zirconium in molybdenum alloys. [Pg.126]

Both molybdenum and tungsten can be worked in air without ductiHty loss. AH refractory metals can be made into tubing by extmsion, and most refractory metals, except chromium, are available as wine. Tungsten wines were attempted as fiber reinforcement for experimental nickel-base composites. [Pg.128]

Siliconizing is yet another process used especially for coating of the refractory metals Ti, Nb, Ta, Cr, Mo, and W (see Refractories). These metals form siHcides which have a surface oxidation protection layer of Si02. Siliconizing is especially effective on molybdenum against air oxidation up to 1700°C. [Pg.136]

Copper and silver combined with refractory metals, such as tungsten, tungsten carbide, and molybdenum, are the principal materials for electrical contacts. A mixture of the powders is pressed and sintered, or a previously pressed and sintered refractory matrix is infiltrated with molten copper or silver in a separate heating operation. The composition is controlled by the porosity of the refractory matrix. Copper—tungsten contacts are used primarily in power-circuit breakers and transformer-tap charges. They are confined to an oil bath because of the rapid oxidation of copper in air. Copper—tungsten carbide compositions are used where greater mechanical wear resistance is necessary. [Pg.190]

Physical Properties. Molybdenum has many unique properties, leading to its importance as a refractory metal (see Refractories). Molybdenum, atomic no. 42, is in Group 6 (VIB) of the Periodic Table between chromium and tungsten vertically and niobium and technetium horizontally. It has a silvery gray appearance. The most stable valence states are +6, +4, and 0 lower, less stable valence states are +5, +3, and +2. [Pg.463]

Lubricants. TeUurides of titanium, 2irconium, molybdenum, tungsten, and other refractory metals are heat- and vacuum-stable. This property makes them useful in soUd self-lubricating composites in the electronics, instmmentation, and aerospace fields (see Lubrication and lubricants). Organic teUurides are antioxidants in lubricating oUs and greases. [Pg.392]

Berylha ceramic parts ate frequendy used in electronic and microelectronic apphcations requiting thermal dissipation (see Ceramics as ELECTRICAL materials). Berylha substrates are commonly metallized using refractory metallizations such as molybdenum—manganese or using evaporated films of chromium, titanium, and nickel—chromium alloys. Semiconductor devices and integrated circuits (qv) can be bonded by such metallization for removal of heat. [Pg.77]

Borides are inert toward nonoxidizing acids however, a few, such as Be2B and MgB2, react with aqueous acids to form boron hydrides. Most borides dissolve in oxidizing acids such as nitric or hot sulfuric acid and they ate also readily attacked by hot alkaline salt melts or fused alkaU peroxides, forming the mote stable borates. In dry air, where a protective oxide film can be preserved, borides ate relatively resistant to oxidation. For example, the borides of vanadium, niobium, tantalum, molybdenum, and tungsten do not oxidize appreciably in air up to temperatures of 1000—1200°C. Zirconium and titanium borides ate fairly resistant up to 1400°C. Engineering and other properties of refractory metal borides have been summarized (1). [Pg.218]

Ceramics are joined to metals by metal eoating and brazing, and by the use of adhesives. In metal coating, the mating face of the ceramic part is coated in a thin film of a refractory metal such as molybdenum (usually applied as a powder and then heated). [Pg.204]

Molybdenum is a high-strength refractory metal, although recrystallizes above 950°C with accompanying reduction in mechanical properties. It is easily fabricated. Its properties are summarized in Table 6.6. CVD is commonly used for the production of molybdenum coatings and free-standing shapes. [Pg.156]

The silicides of major industrial importance are the disilicides of the refractory metals molybdenum, tantalum, titanium, tungsten, vanadium, and zirconium.pl] These compounds are of great interest par-... [Pg.327]

Molybdenum. Molybdenum is another refractory metal with low resistivity (5-7 iohm-cm) now under investigation for metallization of IC s. It is usually deposited by the decomposition of the carbonyl, Mo(CO)6, or by the hydrogen reduction of the halide (M0CI5 or MoFg). These reactions are described in Ch. 6. [Pg.371]

The trend in CVD metallization is toward greater use of copper, and the refractory metals and their silicides in multilayered metallization designs, typically consisting of metal-silicide contacts, refractory-metal barriers, and copper or an aluminum alloy as the principal interconnect metal. Other metals deposited by CVD such as chromium, molybdenum, platinum, rhodium, and ruthenium are also actively considered for use as conductors. [Pg.372]

The refractory metals for which CVD is commonly used to produce free-standing shapes are tungsten, niobium, rhenium, tantalum, molybdenum, and nickelb lb lb l (see Ch. 6). Shapes presently produced include rods, tubes, crucibles, manifolds, ordnance items, nozzles, and thrust chambers. They are usually deposited on a disposable mandrel of copper, molybdenum, or graphite which is subsequently machined off or removed chemically by etching. [Pg.480]

Because several of the superalloys contain very little iron, they are closely related to some of the non-ferrous alloys. Some of the second- and third-row transition metals possess many of the desirable properties of superalloys. They maintain their strength at high temperatures, but they may be somewhat reactive with oxygen under these conditions. These metals are known as refractory metals, and they include niobium, molybdenum, tantalum, tungsten, and rhenium. [Pg.379]

A detailed drawing of a simple metal atom reactor, largely build from commercially available parts, is given in Fig. 2. The main reaction chamber consists of a 3000-mL reaction flask and a four-necked top section. This reactor is suitable for all the experiments described in this chapter, with the possible exception of the molybdenum compounds. For syntheses of a practical scale with refractory metals (vaporization temperature greater than 2000°, e.g. Re, Mo, and W) a larger diameter reactor (140-178 mm) with a standard wall thickness (about 3.5 mm) is recommended to improve heat dissipation. [Pg.63]

In preparing solid platinum from its powder, Wollaston foreshadowed modern methods of powder metallurgy, by which the powders of refractory metals, such as tungsten, molybdenum, tantalum, and columbium, can be fabricated into useful articles (84, 86). [Pg.426]

Several other types of atomizer have been developed. Some of these are based on the design of the West rod, but others have made tubular atomizers from extremely refractory metals such as tungsten, tantalum and molybdenum. This latter class of atomizers tend to be made in-house by some laboratories and, at present, do not have any commercial suppliers. They have the advantage of being inert and non-porous so there is little interaction with the analyte, so that they can be used for the determination of elements which form refractory carbides. However, after extended use and in the presence of some acids, many of these atomizers become brittle and distorted. [Pg.58]

The best colour contrast of red blood cells is achieved on mono- and polycrystalline silicon, and monocrystalline surfaces of refractory metals molybdenum and tungsten, which possess maximal reflectivity. [Pg.107]


See other pages where Molybdenum refractory metals is mentioned: [Pg.347]    [Pg.443]    [Pg.110]    [Pg.125]    [Pg.126]    [Pg.126]    [Pg.127]    [Pg.127]    [Pg.127]    [Pg.136]    [Pg.152]    [Pg.191]    [Pg.462]    [Pg.7]    [Pg.20]    [Pg.27]    [Pg.40]    [Pg.41]    [Pg.41]    [Pg.47]    [Pg.47]    [Pg.381]    [Pg.522]    [Pg.228]    [Pg.919]    [Pg.441]    [Pg.168]    [Pg.65]    [Pg.387]    [Pg.81]    [Pg.104]    [Pg.725]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Molybdenum metal

© 2024 chempedia.info