Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molten surface tension

Fire polishing. In this techniques, discrete solid particles are heated to the softening or melting temperature of the material, usually between 1200 and 1650°C, while suspended and dispersed in a hot gaseous medium (e.g., fluidized bed). As particles become soft or molten, surface tension forms them into an ellipsoidal shape. If kept in suspension until cooled below softening temperature, the particles maybe recovered as spherical grains. [Pg.683]

The maximum bubble pressure method is good to a few tenths percent accuracy, does not depend on contact angle (except insofar as to whether the inner or outer radius of the tube is to be used), and requires only an approximate knowledge of the density of the liquid (if twin tubes are used), and the measurements can be made rapidly. The method is also amenable to remote operation and can be used to measure surface tensions of not easily accessible liquids such as molten metals [29]. [Pg.18]

The length of the zone and the diameter of the tod are chosen in such a way that surface tension and interactions between circulating electric currents in the molten zone and the radio-frequency (r-f) field from the surrounding induction coil keep the molten zone in place. As of this writing (ca 1996), the maximum sihcon rod diameter that can be purified in this manner is ca 125 mm. Initially, additional purification can be obtained by making mote sweeps of the zone. Eventually, however, more sweeps do not remove any additional impurities. The limiting profile is given by equation 4 ... [Pg.526]

Magnesium ferrosihcon alloys react vigorously when added to molten iron. As the magnesium vaporizes and cools, it reacts with residual surface tension modifiers such as sulfur and oxygen and greatly increases the surface tension of the molten iron. The dissolved graphite in the molten iron nucleates and grows into a spheroidal shape because of the increased surface tension of the molten iron. [Pg.540]

In any brazing/soldering process, a molten alloy comes in contact with a surface of solid, which may be an alloy, a ceramic, or a composite material (see Ceramics Composite materials). For a molten alloy to advance over the soHd surface a special relationship has to exist between surface energies of the hquid—gas, soHd—gas, and Hquid—soHd interfaces. The same relationships should, in principle, hold in joining processes where a molten alloy has to fill the gaps existing between surfaces of the parts to be joined. In general, the molten alloy should have a lower surface tension than that of the base material. [Pg.241]

Solders should flow promptly and smoothly over the surfaces of the parts to be joined. This property depends on the surface tension, viscosity, and adhesive properties of the molten solder. Finally, the color of a solder should match that of the metal employed, and its physical properties should be at least as good as those of the metal, in order for the joint not to be a source of weakness (150). [Pg.487]

Some materials are so reactive that they cannot be zone-melted to a high degree of purity in a container. Floating-zone techniques in which the molten zone is held in place by its own surface tension have been developed by Keck et al. [Phys. Rev., 89, 1297 (1953)]. [Pg.1992]

Molten salt investigation methods can be divided into two classes thermodynamic and kinetic. In some cases, the analysis of melting diagrams and isotherms of physical-chemical properties such as density, surface tension, viscosity and electroconductivity enables the determination of the ionic composition of the melt. Direct investigation of the complex structure is performed using spectral methods [294]. [Pg.135]

Konstantinov et al. [320, 321] investigated the surface tension and density of molten systems K2TaF7 - KC1 and K2TaF7 - KF as well as some molten mixtures containing K2TaF7, KC1, KF and Ta2Os, using the method of maximum pressure in gas bubble. [Pg.151]

Volkov and Sushko [335] described a technique that is based on the use of nets. This method provides direct absorption spectra, but is very complex to perform The net must be placed in a chamber that ensures a pure inert atmosphere so as to avoid hydrolysis of the melt, and the temperature and geometry of the net must be kept very stable. Other major limitations of the method are the requirements that the surface tension of the melt be such that its position on the net is ensured, and that the vapor pressure of the material in molten state be as low as possible... [Pg.169]

The National Institute of Standards and Technology (NIST) molten salts database has been designed to provide engineers and scientists with rapid access to critically evaluated data for inorganic salts in the molten state. Properties include density, viscosity, electrical conductance, and surface tension. Properties for approximately 320 single salts and 4000 multicomponent systems are included, the latter being primarily binary. Data have been abstracted from the literature over the period 1890-1990. The primary data sources are the National Bureau of Standards-National... [Pg.121]

The molten salt standard program was initiated at Rensselaer Polytechnic Institute (RPI) in 1973 because of difficulties being encountered with accuracy estimates in the NBS-NSRDS molten salt series. The density, surface tension, electrical conductivity, and viscosity of KNO3 and NaCl were measured by seven laboratories over the world using samples distributed by RPI. The data from these round-robin measurements of raw properties were submitted to RPI for evaluation. Their recommendations are summarized in Table 2. [Pg.122]

G. J. Janz, J. Phys. Chem. Ref Data 17, Supplement (1988) Thermodynamic and Transport Properties for Molten Salts Correlation Equations for Critically Evaluated Density, Surface Tension, Eleetrieal Conduetance and Viseosity Data, American Chemical Society-American Institute of Physics-National Bureau of Standards, Washington, DC, 1988. [Pg.198]

The stable form of arsenic is the gray or metallic form, although other forms are known. Cooling the vapor rapidly produces yellow arsenic, and an orthorhombic form is obtained if the vapor is condensed in the presence of mercury. Arsenic compounds are used in insecticides, herbicides, medicines, and pigments, and arsenic is used in alloys with copper and lead. A small amount of arsenic increases the surface tension of lead, which allows droplets of molten lead to assume a spherical shape, and this fact is utilized in the production of lead shot. [Pg.498]

Recently, the size and shape of a liquid droplet at the molten tip of an arc electrode have been studied,12151 and an iterative method for the shape of static drops has been proposed. 216 Shapes, stabilities and oscillations of pendant droplets in an electric field have also been addressed in some investigations. 217 218 The pendant drop process has found applications in determining surface tensions of molten substances. 152 However, the liquid dripping process is not an effective means for those practical applications that necessitate high liquid flow rates and fine droplets (typically 1-300 pm). For such fine droplets, gravitational forces become negligible in the droplet formation mechanism. [Pg.126]


See other pages where Molten surface tension is mentioned: [Pg.1085]    [Pg.1085]    [Pg.29]    [Pg.39]    [Pg.67]    [Pg.269]    [Pg.96]    [Pg.283]    [Pg.367]    [Pg.296]    [Pg.196]    [Pg.94]    [Pg.336]    [Pg.528]    [Pg.240]    [Pg.241]    [Pg.246]    [Pg.451]    [Pg.483]    [Pg.16]    [Pg.157]    [Pg.18]    [Pg.134]    [Pg.364]    [Pg.389]    [Pg.287]    [Pg.288]    [Pg.33]    [Pg.376]    [Pg.396]    [Pg.68]    [Pg.116]    [Pg.204]    [Pg.355]   
See also in sourсe #XX -- [ Pg.41 , Pg.61 , Pg.66 , Pg.67 , Pg.132 , Pg.138 ]




SEARCH



Molten salts surface tension

Molten surface

Surface tension molten salt standards

© 2024 chempedia.info