Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular weight distribution radical polymerization

The kinetics of free radical linear polymerizations has been thoroughly studied [74] and the relationships between molecular weight distribution and polymerization conditions are well known. Gels are made by incorporating a small fraction of bi-functional or multifunctional monomers that becomes part of more than one kinetic chain so that a network forms. The statistics of network formation are also well known. [Pg.498]

The molecular weight distribution for a polymer like that described above is remarkably narrow compared to free-radical polymerization or even to ionic polymerization in which transfer or termination occurs. The sharpness arises from the nearly simultaneous initiation of all chains and the fact that all active centers grow as long as monomer is present. The following steps outline a quantitative treatment of this effect ... [Pg.407]

Aromatic radical anions, such as lithium naphthalene or sodium naphthalene, are efficient difunctional initiators (eqs. 6,7) (3,20,64). However, the necessity of using polar solvents for their formation and use limits their utility for diene polymerization, since the unique abiUty of lithium to provide high 1,4-polydiene microstmcture is lost in polar media (1,33,34,57,63,64). Consequentiy, a significant research challenge has been to discover a hydrocarbon-soluble dilithium initiator which would initiate the polymerization of styrene and diene monomers to form monomodal a, CO-dianionic polymers at rates which are faster or comparable to the rates of polymerization, ie, to form narrow molecular weight distribution polymers (61,65,66). [Pg.239]

Various techniques have been studied to increase sohds content. Hydroxy-functional chain-transfer agents, such as 2-mercaptoethanol [60-24-2], C2HgOS, reduce the probabihty of nonfunctional or monofunctional molecules, permitting lower molecular-weight and functional monomer ratios (44). Making low viscosity acryhc resins by free-radical initiated polymerization requires the narrowest possible molecular-weight distribution. This requires carehil control of temperature, initiator concentration, and monomer concentrations during polymerization. [Pg.338]

A factor in addition to the RTD and temperature distribution that affects the molecular weight distribution (MWD) is the nature of the chemical reaciion. If the period during which the molecule is growing is short compared with the residence time in the reactor, the MWD in a batch reactor is broader than in a CSTR. This situation holds for many free radical and ionic polymerization processes where the reaction intermediates are very short hved. In cases where the growth period is the same as the residence time in the reactor, the MWD is narrower in batch than in CSTR. Polymerizations that have no termination step—for instance, polycondensations—are of this type. This topic is treated by Denbigh (J. Applied Chem., 1, 227 [1951]). [Pg.2102]

As discussed in Section 7.3, conventional free radical polymerization is a widely used technique that is relatively easy to employ. However, it does have its limitations. It is often difficult to obtain predetermined polymer architectures with precise and narrow molecular weight distributions. Transition metal-mediated living radical polymerization is a recently developed method that has been developed to overcome these limitations [53, 54]. It permits the synthesis of polymers with varied architectures (for example, blocks, stars, and combs) and with predetermined end groups (e.g., rotaxanes, biomolecules, and dyes). [Pg.329]

The high-molecular weight was assigned to the PMMA grafted to the copolymer chains and the low-molecular weight to the PMMA initiated by the MMA radical (II). However, only one molecular weight distribution peak was observed for the PMMA initiated by the latter system, i.e., in combination with BP, which implies that only aminomethyl radicals are capable of initiating the polymerization. [Pg.240]

The block copolymer produced by Bamford s metal carbonyl/halide-terminated polymers photoinitiating systems are, therefore, more versatile than those based on anionic polymerization, since a wide range of monomers may be incorporated into the block. Although the mean block length is controllable through the parameters that normally determine the mean kinetic chain length in a free radical polymerization, the molecular weight distributions are, of course, much broader than with ionic polymerization and the polymers are, therefore, less well defined,... [Pg.254]

Currently, more SBR is produced by copolymerizing the two monomers with anionic or coordination catalysts. The formed copolymer has better mechanical properties and a narrower molecular weight distribution. A random copolymer with ordered sequence can also be made in solution using butyllithium, provided that the two monomers are charged slowly. Block copolymers of butadiene and styrene may be produced in solution using coordination or anionic catalysts. Butadiene polymerizes first until it is consumed, then styrene starts to polymerize. SBR produced by coordinaton catalysts has better tensile strength than that produced by free radical initiators. [Pg.353]

Transfer to initiator can be a major complication in polymerizations initiated by diacyl peroxides. The importance of the process typically increases with monomer conversion and the consequent increase in the [initiator] [monomer] ratio.9 105160 162 In BPO initiated S polymerization, transfer to initiator may be lire major chain termination mechanism. For bulk S polymerization with 0.1 M BPO at 60 °C up to 75% of chains are terminated by transfer to initiator or primary radical termination (<75% conversion).7 A further consequence of the high incidence of chain transfer is that high conversion PS formed with BPO initiator tends to have a much narrower molecular weight distribution than that prepared with other initiators (e.g. AIBN) under similar conditions. [Pg.85]

Successful NMP in emulsion requires use of conditions where there is no discrete monomer droplet phase and a mechanism to remove any excess nitroxide formed in the particle phase as a consequence of the persistent radical effect. Szkurhan and Georges"18 precipitated an acetone solution of a low molecular weight TEMPO-tcrminated PS into an aqueous solution of PVA to form emulsion particles. These were swollen with monomer and polymerized at 135 °C to yield very low dispersity PS and a stable latex. Nicolas et at.219 performed emulsion NMP of BA at 90 °C making use of the water-soluble alkoxyamine 110 or the corresponding sodium salt both of which are based on the open-chain nitroxide 89. They obtained PBA with narrow molecular weight distribution as a stable latex at a relatively high solids level (26%). A low dispersity PBA-WocA-PS was also prepared,... [Pg.482]

Chung and coworkers have reported on the use of stable borinale or boroxyl radicals (e.g. 114) to mediate radical polymerization." Methacrylates (MMA) and acrylates (trifluoroelhyl acrylate) have been polymerized at ambient temperature to yield polymers with relatively narrow molecular weight distributions.231233 The method has been used to prepare block copolymers and polyolefin graft copolymers.2 4 37... [Pg.483]

Analytical expressions have been derived for calculating dispcrsitics of polymers formed by polymerization with reversible chain transfer. The expression (eq. 17) applies in circumstances where the contributions to the molecular weight distribution by termination between propagating radicals, external initiation, and differential activity of the initial transfer agent are negligible.21384... [Pg.500]

Lewis acids 436 metal complex-mediated radical polymerization 484-6 molecular weight distributions 251,453-4, 458-60,490-1.499-501 molecular weight conversion dependence 452-3,455... [Pg.617]

Firstly, the classical theories on radical reactivity and polymerization mechanism do not adequately explain the rate and specificity of simple radical reactions. As a consequence, they can not be used to predict the manner in which polymerization rate parameters and details of polymer microstructurc depend on reaction conditions, conversion and molecular weight distribution. [Pg.663]

First, in composites with high fiber concentrations, there is little matrix in the system that is not near a fiber surface. Inasmuch as polymerization processes are influenced by the diffusion of free radicals from initiators and from reactive sites, and because free radicals can be deactivated when they are intercepted at solid boundaries, the high interfacial area of a prepolymerized composite represents a radically different environment from a conventional bulk polymerization reactor, where solid boundaries are few and very distant from the regions in which most of the polymerization takes place. The polymer molecular weight distribution and cross-link density produced under such diffusion-controlled conditions will differ appreciably from those in bulk polymerizations. [Pg.85]

Advanced computational models are also developed to understand the formation of polymer microstructure and polymer morphology. Nonuniform compositional distribution in olefin copolymers can affect the chain solubility of highly crystalline polymers. When such compositional nonuniformity is present, hydrodynamic volume distribution measured by size exclusion chromatography does not match the exact copolymer molecular weight distribution. Therefore, it is necessary to calculate the hydrodynamic volume distribution from a copolymer kinetic model and to relate it to the copolymer molecular weight distribution. The finite molecular weight moment techniques that were developed for free radical homo- and co-polymerization processes can be used for such calculations [1,14,15]. [Pg.110]

Figure 4.74 Radical polymerization of acrylates in a iaboratory-scaie experimentai set-up with a Sulzer-type pre-mixer. Fouling at the feeding point of the static mixer (top) and molecular weight distribution (bottom) [125],... Figure 4.74 Radical polymerization of acrylates in a iaboratory-scaie experimentai set-up with a Sulzer-type pre-mixer. Fouling at the feeding point of the static mixer (top) and molecular weight distribution (bottom) [125],...
A radical initiator based on the oxidation adduct of an alkyl-9-BBN (47) has been utilized to produce poly(methylmethacrylate) (48) (Fig. 31) from methylmethacrylate monomer by a living anionic polymerization route that does not require the mediation of a metal catalyst. The relatively broad molecular weight distribution (PDI = (MJM ) 2.5) compared with those in living anionic polymerization cases was attributed to the slow initiation of the polymerization.69 A similar radical polymerization route aided by 47 was utilized in the synthesis of functionalized syndiotactic polystyrene (PS) polymers by the copolymerization of styrene.70 The borane groups in the functionalized syndiotactic polystyrenes were transformed into free-radical initiators for the in situ free-radical graft polymerization to prepare s-PS-g-PMMA graft copolymers. [Pg.41]


See other pages where Molecular weight distribution radical polymerization is mentioned: [Pg.36]    [Pg.47]    [Pg.265]    [Pg.381]    [Pg.387]    [Pg.383]    [Pg.5]    [Pg.338]    [Pg.727]    [Pg.235]    [Pg.238]    [Pg.251]    [Pg.282]    [Pg.451]    [Pg.453]    [Pg.471]    [Pg.523]    [Pg.616]    [Pg.621]    [Pg.633]    [Pg.636]    [Pg.665]    [Pg.147]    [Pg.494]    [Pg.180]    [Pg.502]    [Pg.32]    [Pg.333]    [Pg.38]    [Pg.39]    [Pg.40]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Distribution weight

Distributive polymerization

Free radical polymerization molecular weight distribution

Free radical polymerization narrow molecular weight distribution

Living radical polymerization molecular weight distributions

Molecular Radicals

Molecular distribution

Molecular polymerization

Molecular weight distribution

Molecular weight distribution in free-radical polymerization

Molecular weight distribution radical chain polymerization

Molecular weight polymerization)

Molecular weight radical polymerization

Polymerization distribution

© 2024 chempedia.info