Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular sieving, film-/membrane-base

It is evident that the ceramic membrane, which is represented in the XRD pattern (see Figure 10.6) by the amorphous component of the XRD profile, was covered by the AlP04-5 molecular sieve, since the crystalline component of the obtained XRD pattern fairly well coincides with the standards reported in the literature [107]. Consequently, the porous support was successfully coated with a zeolite layer, which was shaped by the hydrothermal process as previously described. Thus, a composite membrane, that is, an AlP04-5 molecular sieve thin film zeolite-based ceramic, was produced. [Pg.482]

The nanoporous carbon membrane consists of a thin layer (<10pm) of a nanoporous (3-7 A) carbon film supported on a meso-macroporous solid such as alumina or a carbonized polymeric structure. They are produced by judicious pyrolysis of polymeric films. Two types of membranes can be produced. A molecular sieve carbon (MSC) membrane contains pores (3-5 A diameters), which permits the smaller molecules of a gas mixture to enter the pores at the high-pressure side. These molecules adsorb on the pore walls and then they diffuse to the low-pressure side of the membrane where they desorb to the gas phase. Thus, separation is primarily based on differences in the size of the feed gas molecules. Table 7 gives a few examples of separation performance of MSC membranes. ° Component 1 is the smaller component of the feed gas mixture. [Pg.37]

Zeolite materials are used commercially as shape/ size selective catalysts in the petrochemical and petroleum refining industry, and as molecular sieving separation media for gases and hydrocarbons. For both applications, zeolites are used in powder composite form such as pellets and granules. In this entry, we focus on zeolite membranes. We define zeolite membranes as a continuous phase of zeolite-based materials (pure zeolite or composite) that separate two spaces. Zeolite membranes are generally uniform thin films attached to a porous or a nonporous substrate. They can also be self-standing without a substrate. Note that we have included zeolite films and layers on nonporous substrate in this entry because we believe many of the synthesis strategies and applications reported for those nonporous substrates are easily transferred to a porous substrate to prepare a zeolite membrane. [Pg.3237]

Zeolites are crystalline aluminosiUcates characterized by a structure comprising a three-dimensional pore system and regular framework formed by linked TO4 tetrahedral (T = Si, Al) with different morphological and physico-chemical properties. Due to their impressive selectivity and uniform pore structure, they have very efficient molecular sieving properties, and are able to separate molecules based on size and shape. Zeolite powders, films and membranes are widely used in catalysis, adsorption and separation applications (McLeary et al, 2006 Pina et al., 2011). Zeolites are cheap and widely available due to their abundance in both natural and synthetic forms. The application of zeolites in the membrane field is growing very fast, and has been the subject of increased research focus during the last few decades (McLeary et al., 2006). [Pg.208]

A number of physical devices with chemical sensitivity have been developed previously, including the quartz crystal microbalance (QCM) and other acoustic wave devices, semiconductor gas sensors, and various chemically sensitive field effect transistors. However, based on their intrinsic detection principles, most of the known solid state chemical sensors are not selective, i.e., they respond to more than one or a few chemical species. There is an urgent demand for new families of selective, microscope sensors that can eventually be integrated into microelectronic circuits. We have embarked on a program aimed at the design of conceptually new microporous thin films with molecular recognition capabilities. On the surface of chemical sensors, these membranes will serve as "molecular sieves that control access of selected target molecules to the sensor surface. [Pg.17]


See other pages where Molecular sieving, film-/membrane-base is mentioned: [Pg.145]    [Pg.164]    [Pg.159]    [Pg.213]    [Pg.189]    [Pg.301]    [Pg.427]    [Pg.75]    [Pg.895]    [Pg.896]    [Pg.116]    [Pg.116]    [Pg.353]    [Pg.145]    [Pg.159]    [Pg.912]    [Pg.32]    [Pg.896]    [Pg.211]    [Pg.131]    [Pg.669]    [Pg.296]    [Pg.1348]    [Pg.58]    [Pg.301]    [Pg.896]    [Pg.419]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Bases membrane

Film membrane

Molecular Sieving Membranes

Molecular bases

Molecular films

Molecular sieve membrane

Molecular sieves

Molecular sieving

© 2024 chempedia.info