Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular polyvinyl alcohol

Macroporous polyvinyl alcohol particles with a molecular weight cutoff of ca. 8 X 10 in gel-permeation chromatography have been prepared. The particles are produced by first dispersing an aqueous solution of polyvinyl alcohol in an organic solvent to make spheres of polyvinyl alcohol solution. Holding the dispersion in such a state that a gel will then form spontaneously will cause the gel to react with glutaraldehyde in the presence of an acidic catalyst (85). [Pg.23]

The actual experimental moduli of the polymer materials are usually about only % of their theoretical values [1], while the calculated theoretical moduli of many polymer materials are comparable to that of metal or fiber reinforced composites, for instance, the crystalline polyethylene (PE) and polyvinyl alcohol have their calculated Young s moduli in the range of 200-300 GPa, surpassing the normal steel modulus of 200 GPa. This has been attributed to the limitations of the folded-chain structures, the disordered alignment of molecular chains, and other defects existing in crystalline polymers under normal processing conditions. [Pg.295]

Fig. 7. Solid state molecular transistor based on polyaniline bridged microelectrodes. PVA layer of polyvinyl alcohol 1 drain current Vg gate voltage rendering the polyaniline non-conductive Vg gate voltage switching on conductivity of the polyaniline layer (from ref. Fig. 7. Solid state molecular transistor based on polyaniline bridged microelectrodes. PVA layer of polyvinyl alcohol 1 drain current Vg gate voltage rendering the polyaniline non-conductive Vg gate voltage switching on conductivity of the polyaniline layer (from ref.
Secondary alcohol oxidases catalyze the oxidation of secondary alcohols to ketones using molecular oxygen as oxidant. A secondary alcohol oxidase from polyvinyl alcohol-degrading bacterium Pseudomonas vesicularis var. povalolyticus PH exhibited activity toward several... [Pg.159]

The adsorption of fully and partially hydrolyzed (88%) polyvinyl alcohol (PVA) on 190-1lOOnm monodisperse polystyrene latex particles was investigated. The effect of molecular weight was investigated for 190 nm-size particles using the serum replacement adsorption and desorption methods. The adsorption density at the adsorption-isotherm plateau followed the relationships for the fully hydrolyzed... [Pg.77]

Polyvinyl alcohol(PVA) was obtained from the Kurarey Co.,Ltd. Japan the molecular weight and the degree of hydrolysis were determined by the supplier as 88,000 and 80 %, respectively. The molecular weight and the molecular weight distribution data of the polymer samples are shown in Table 1. [Pg.133]

When vinyl flouride is polymerized, a certain percentage of the flourine atoms are found on adjacent carbon atoms. When polyvinyl alcohol made by hydrolyzing polyvinyl acetate was treated with periodic acid by Flory, he found that the molecular weight was greatly reduced, indicating that there were 1,2-glycol units in the chain. But most of the polymers were regular head-to-tail polymers. [Pg.58]

Klomklang W, Tani A et al (2005) Biochemical and molecular characterization of a periplasmic hydrolase for oxidized polyvinyl alcohol from Sphingomonas sp. strain 113P3. Microbiology 151 1255-1262... [Pg.171]

Exercise 29-17 Polyvinyl alcohol prepared by hydrolysis of polyethenyl ethanoate (polyvinyl acetate Table 29-1) does not react with measurable amounts of periodic acid or lead tetraethanoate (Sections 16-9A and 20-4A). However, periodic acid or lead tetraethanoate treatment of the polymer does decrease the number-average molecular weight, for a typical sample from 25,000 to 5000. Explain what these results mean in terms of the polymerstructures and the mechanism of the polymerization. [Pg.1450]

In an attempt to avoid interactions with residual silanol groups, Abidi and Mounts investigated the separation of the molecular species of PC, PE, and SPH on polymeric C18 columns by RP-HPLC (103). Of the three polymer columns evaluated, the best HPLC results were obtained with an octadecanoyl polyvinyl alcohol (ODPVA) stationary phase. High-performance LC on ODPVA with an A/M/W mobile phase provided significantly faster analysis and greater detection sensitivity than assays with C18 silica columns. [Pg.271]

PC PE PES PET PF PFA PI PMMA PP PPO PS PSO PTFE PTMT PU PVA PVAC PVC PVDC PVDF PVF TFE SAN SI TP TPX UF UHMWPE UPVC Polycarbonate Polyethylene Polyether sulfone Polyethylene terephthalate Phenol-formaldehyde Polyfluoro alkoxy Polyimide Polymethyl methacrylate Polypropylene Polyphenylene oxide Polystyrene Polysulfone Polytetrafluoroethylene Polytetramethylene terephthalate (thermoplastic polyester) Polyurethane Polyvinyl alcohol Polyvinyl acetate Polyvinyl chloride Polyvinyl idene chloride Polyvinylidene fluoride Polyvinyl fluoride Polytelrafluoroethylene Styrene-acrylonitrile Silicone Thermoplastic Elastomers Polymethylpentene Urea formaldehyde Ultrahigh-molecular-weight polyethylene Unplasticized polyvinyl chloride... [Pg.106]

Rather recently, we have studied the solid-state structure of various polymers, such as polyethylene crystallized under different conditions [17-21], poly (tetramethylene oxide) [22], polyvinyl alcohol [23], isotactic and syndiotactic polypropylene [24,25],cellulose [26-30],and amylose [31] with solid-state high-resolution X3C NMR with supplementary use of other methods, such as X-ray diffraction and IR spectroscopy. Through these studies, the high resolution solid-state X3C NMR has proved very powerful for elucidating the solid-state structure of polymers in order of molecules, that is, in terms of molecular chain conformation and dynamics, not only on the crystalline component but also on the noncrystalline components via the chemical shift and magnetic relaxation. In this chapter we will review briefly these studies, focusing particular attention on the molecular chain conformation and dynamics in the crystalline-amorphous interfacial region. [Pg.43]

PVA is further modified to obtain polyvinylacetatephthalate (PVAcP), which is used in enteric coatings. PVAcP is prepared from the reaction of partially hydrolyzed polyvinyl alcohol, sodium acetate and phthalic anhydride. It consists of 55 to 62% of phthalyl groups. The PVA used is a low molecular weight grade with 87 to 89 mole% hydrolyzed. Since only vinyl alcohol portions of the partially hydrolyzed PVA are phthalated, the acetyl content remains constant before and after the reaction. [Pg.453]

The stabilising action of the adsorption layers from high molecular substances (protective colloids) is related to the decrease in the forces of molecular attraction. Hence, films from aqueous solution of polyvinyl alcohol obtained between drops of cyclohexane have thickness of 80 nm and respectively, a very low attraction force, in contrast to black films [513]. Along with that the adsorption layers from such compounds possess visco-elasticity properties with modulus of elasticity 104 N m"2, impeding the film thinning and drop coalescence [503]. [Pg.306]

For Saffil alumina fiber, aluminum oxychloride [Al2(OH)jCI] is mixed with a medium molecular weight polymer such as 2wt% polyvinyl alcohol. The aqueous phase contains an oxide sol and an organic polymer. The sol is extruded as filaments into a coagulating (or precipitating) bath in which the extruded shape gels. The gelled fiber is then dried and calcined to produce the final oxide fiber. This solution is slowly evaporated in a rotary evaporator imtil a viscosity... [Pg.149]


See other pages where Molecular polyvinyl alcohol is mentioned: [Pg.24]    [Pg.220]    [Pg.222]    [Pg.341]    [Pg.356]    [Pg.691]    [Pg.459]    [Pg.346]    [Pg.205]    [Pg.368]    [Pg.387]    [Pg.147]    [Pg.187]    [Pg.236]    [Pg.163]    [Pg.161]    [Pg.165]    [Pg.241]    [Pg.586]    [Pg.353]    [Pg.222]    [Pg.11]    [Pg.132]    [Pg.32]    [Pg.388]    [Pg.90]    [Pg.114]    [Pg.290]    [Pg.316]    [Pg.239]    [Pg.207]    [Pg.200]    [Pg.321]    [Pg.208]    [Pg.656]   
See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Polyvinyl alcohol molecular structure

Polyvinyl alcohol molecular weight

Polyvinylic alcohol

© 2024 chempedia.info