Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intrinsic moduli

High performance silicone gels have been shown to have excellent electrical characteristics. With their superior jelly-like (near zero modulus) intrinsically soft, physical property and ultra-high chemical purity, silicone gels are becoming very attractive encapsulants. They are chosen to... [Pg.225]

With appropriate caUbration the complex characteristic impedance at each resonance frequency can be calculated and related to the complex shear modulus, G, of the solution. Extrapolations to 2ero concentration yield the intrinsic storage and loss moduH [G ] and [G"], respectively, which are molecular properties. In the viscosity range of 0.5-50 mPa-s, the instmment provides valuable experimental data on dilute solutions of random coil (291), branched (292), and rod-like (293) polymers. The upper limit for shearing frequency for the MLR is 800 H2. High frequency (20 to 500 K H2) viscoelastic properties can be measured with another instmment, the high frequency torsional rod apparatus (HFTRA) (294). [Pg.201]

Reinforcements. The high modulus, high intrinsic strength, and temperature stabiHty make SiC, in the form of whiskers, platelets, and fibers, a promising candidate reinforcement material for metal, polymer, and ceramic matrix composites (qv). [Pg.466]

Figure 10 shows that Tj is a unique function of the Thiele modulus. When the modulus ( ) is small (- SdSl), the effectiveness factor is unity, which means that there is no effect of mass transport on the rate of the catalytic reaction. When ( ) is greater than about 1, the effectiveness factor is less than unity and the reaction rate is influenced by mass transport in the pores. When the modulus is large (- 10), the effectiveness factor is inversely proportional to the modulus, and the reaction rate (eq. 19) is proportional to k ( ), which, from the definition of ( ), implies that the rate and the observed reaction rate constant are proportional to (1 /R)(f9This result shows that both the rate constant, ie, a measure of the intrinsic activity of the catalyst, and the effective diffusion coefficient, ie, a measure of the resistance to transport of the reactant offered by the pore stmcture, influence the rate. It is not appropriate to say that the reaction is diffusion controlled it depends on both the diffusion and the chemical kinetics. In contrast, as shown by equation 3, a reaction in solution can be diffusion controlled, depending on D but not on k. [Pg.172]

The transverse modulus is lower partly because the cell wall is less stiff in this direction, but partly because the foam structure is intrinsically anisotropic because of the cell shape. When wood is loaded across the grain, the cell walls bend (Fig. 26.5b,c). It behaves like a foam (Chapter 25) for which... [Pg.282]

As is true for macroscopic adhesion and mechanical testing experiments, nanoscale measurements do not a priori sense the intrinsic properties of surfaces or adhesive junctions. Instead, the measurements reflect a combination of interfacial chemistry (surface energy, covalent bonding), mechanics (elastic modulus, Poisson s ratio), and contact geometry (probe shape, radius). Furthermore, the probe/sample interaction may not only consist of elastic deformations, but may also include energy dissipation at the surface and/or in the bulk of the sample (or even within the measurement apparatus). Study of rate-dependent adhesion and mechanical properties is possible with both nanoindentation and... [Pg.193]

It depends only on J sJkj A, which is a dimensionless group known as the Thiele modulus. The Thiele modulus can be measured experimentally by comparing actual rates to intrinsic rates. It can also be predicted from first principles given an estimate of the pore length =2 . Note that the pore radius does not enter the calculations (although the effective diffusivity will be affected by the pore radius when dpore is less than about 100 run). [Pg.364]

Hard layer and soft layer combined together can reduce the intrinsic stress of the whole coating [17,18,22-27]. Samples 4, 5, and 6 have higher critical load than that of monolayer A and B. For Samples 5 and 6, no obvious crack occurs during the scratch test. Sample 5 has the highest hardness and reduced elastic modulus among the multilayer samples, and the interfaces in Sample 5 also contribute to scratch resistance. So it has the best micromechanical properties here. [Pg.204]

Substituting the intrinsic passage into Eq. (20-58) and rearranging yields an expression for the polarization modulus c /cj, ... [Pg.39]

In the case of dynamic mechanical relaxation the Zimm model leads to a specific frequency ( ) dependence of the storage [G ( )] and loss [G"(cd)] part of the intrinsic shear modulus [G ( )] [1]. The smallest relaxation rate l/xz [see Eq. (80)], which determines the position of the log G (oi) and log G"(o>) curves on the logarithmic -scale relates to 2Z(Q), if R3/xz is compared with Q(Q)/Q3. The experimental results from dilute PDMS and PS solutions under -conditions [113,114] fit perfectly to the theoretically predicted line shape of the components of the modulus. In addition l/xz is in complete agreement with the theoretical prediction based on the pre-averaged Oseen tensor. [Pg.81]

The numerator of the right side of this equation is equal to the chemical reaction rate that would prevail if there were no diffusional limitations on the reaction rate. In this situation, the reactant concentration is uniform throughout the pore and equal to its value at the pore mouth. The denominator may be regarded as the product of a hypothetical diffusive flux and a cross-sectional area for flow. The hypothetical flux corresponds to the case where there is a linear concentration gradient over the pore length equal to C0/L. The Thiele modulus is thus characteristic of the ratio of an intrinsic reaction rate in the absence of mass transfer limitations to the rate of diffusion into the pore under specified conditions. [Pg.440]

For situations where the reaction is very slow relative to diffusion, the effectiveness factor for the poisoned catalyst will be unity, and the apparent activation energy of the reaction will be the true activation energy for the intrinsic chemical reaction. As the temperature increases, however, the reaction rate increases much faster than the diffusion rate and one may enter a regime where hT( 1 — a) is larger than 2, so the apparent activation energy will drop to that given by equation 12.3.85 (approximately half the value for the intrinsic reaction). As the temperature increases further, the Thiele modulus [hT( 1 — a)] continues to increase with a concomitant decrease in the effectiveness with which the catalyst surface area is used and in the depth to which the reactants are capable of... [Pg.468]

When the effectiveness factors for both reactions approach unity, the selectivity for two independent simultaneous reactions is the ratio of the two intrinsic reaction-rate constants. However, at low values of both effectiveness factors, the selectivity of a porous catalyst may be greater than or less than that for a plane-catalyst surface. For a porous spherical catalyst at large values of the Thiele modulus s, the effectiveness factor becomes inversely proportional to (j>S9 as indicated by equation 12.3.68. In this situation, equation 12.3.133 becomes... [Pg.469]

The intrinsic energy band-gap of YAG is about 6.6 eV., and the Burgers displacement is about half the unit cell size, or 6 A. Then, if a kink volume is taken to be 6 x 3 x 3 = 54 A3, the bond modulus is 0.11 eV/A3, or 1800 kg/mm2. Given how little is known about dislocation motion in garnet, this agreement with the room temperature hardness value is largely fortuitous. [Pg.151]

It is very difficult to obtain values for the intrinsic hardnesses of silicate and related types of glass. Therefore, no attempts at quantitative analyses will be made here. A semi-empirical method has been proposed by Yamane and Mackenzie (1974) based on the geometric mean of bond strength relative to silica, shear modulus, and bulk modulus. For 50 silicate glasses it yields estimates within ten percent of measured values, and for a few non-silicate glasses it is quite successful, as Figure 14.2 indicates. [Pg.173]

In the previous sections the theoretical relations describing the strength of a polymer fibre as a function of the intrinsic parameters, such as the chain modulus, the modulus for shear between adjacent chains, the orientation distribution and the chain length distribution, have been discussed. In this section the dependence of the strength on the time and the temperature will be investigated. [Pg.80]

The presence (or absence) of pore-diffusion resistance in catalyst particles can be readily determined by evaluation of the Thiele modulus and subsequently the effectiveness factor, if the intrinsic kinetics of the surface reaction are known. When the intrinsic rate law is not known completely, so that the Thiele modulus cannot be calculated, there are two methods available. One method is based upon measurement of the rate for differing particle sizes and does not require any knowledge of the kinetics. The other method requires only a single measurement of rate for a particle size of interest, but requires knowledge of the order of reaction. We describe these in turn. [Pg.208]

This example illustrates calculation of the rate of a surface reaction from an intrinsic-rate law of the LH type in conjunction with determination of the effectiveness factor (rj) from the generalized Thiele modulus (G) and Figure 8.11 as an approximate representation of the 7]-Q relation. We first determine G, then 17, and finally (—rA)obs. [Pg.217]

The high frequency elastic modulus does not appear in the retardation spectrum but is an intrinsic part of the relaxation spectrum. These features are reinforced when the interrelationship between the spectra are considered. [Pg.135]

However, in such a high concentration regime we can no longer represent the relaxation times (Equation (5.92)) in terms of the intrinsic viscosity. In the low frequency limit, because there is no permanent crosslinking present, the loss modulus divided by the frequency should equate with ... [Pg.191]


See other pages where Intrinsic moduli is mentioned: [Pg.189]    [Pg.189]    [Pg.189]    [Pg.329]    [Pg.78]    [Pg.189]    [Pg.189]    [Pg.189]    [Pg.329]    [Pg.78]    [Pg.300]    [Pg.524]    [Pg.172]    [Pg.44]    [Pg.101]    [Pg.159]    [Pg.173]    [Pg.183]    [Pg.958]    [Pg.32]    [Pg.32]    [Pg.50]    [Pg.356]    [Pg.96]    [Pg.490]    [Pg.83]    [Pg.13]    [Pg.180]    [Pg.208]    [Pg.438]    [Pg.677]    [Pg.91]    [Pg.64]    [Pg.50]   
See also in sourсe #XX -- [ Pg.596 ]




SEARCH



Intrinsic loss shear modulus

Intrinsic storage shear modulus

© 2024 chempedia.info