Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Modified electron transfer within

This system illustrates the importance of both the thermodynamic and intrinsic barriers in determining the direction of electron transfer within a given reactant pair. In addition, systems such as the one considered here in which the oxidative and reductive pathways possess comparable rate constants afford an opportunity of controlling or switching the direction of electron transfer by modifying one of the barriers. [Pg.171]

Razskazovskiy et al. employ ESR spectroscopy at low temperatures to investigate electron transfer within brominated DNA [8]. The brominated DNA base electron traps were introduced by bromination of DNA in ice-cooled aqueous solution. The procedure is shown by NMR and GC/MS techniques to modify thymine, cytosine, and guanine, transforming them into 5-bro-mo-6-hydroxy-5,6-dihydrothymine, T(OH)Br, 5-bromocytosine, CBr, and 8-bromoguanine, GBr, derivatives. The bromination products formed in molar ratio close to T(OH)Br/CBr/GBr 0.2 1 0.23 and serve as internal electron scavengers on y-irradiation. Structurally the CBr and GBr are planar, but T(OH)Br is quite nonplanar with the bromine directly above the molecular plane. This disrupts the DNA base stack. Paramagnetic products that result... [Pg.124]

The possibility of reversible electron transfer within the modified DNA film was tested by carrying out an electrochemical study [85] of the redox couple Fe(lll)/Fe(Il) which has reasonably fast electrode kinetics, and which are dependent on electrode material. The oxidation of Fe(CN)g in 0.4 M K2S04 aqueous solution contacting the DNA-modified glassy carbon electrode showed virtually the same reaction rate as when using the bare glassy carbon electrode, Fig. 3.10, and the results were comparable to... [Pg.107]

In natural systems, redox proteins such as cytochrome c (cyt c) function not only to transfer electrons, but to transfer electrons specifically to a particular redox partner, usually another macromolecule. Transfer of electrons between subunits of modified hemoglobins and within complexes of cyt c with cyt b5 and cyt c with cyt c peroxidase (Cep) have therefore been studied extensively (41,42). These studies have revealed the fundamental requirements for the recognition process leading to the formation of the protein-protein complex as well as the thermodynamic features of the electron-transfer reaction itself. This reaction, outlined in equation 6, consists of three fundamental processes recognition to form a complex (Ki), electron transfer within the complex, and dissociation of the redox-altered complex (K2). For the cyt c-Ccp complex, Fe(II) cyt c corresponds to P2red and oxidized Cep corresponds to P °x. [Pg.18]

The long-range electron transfer reactions in ruthenium-modified myoglobin, in which the labile heme unit has been replaced by various metalloporphyrins, have been reviewed. The reductions of the [Ru(NH3)5] moiety, attached at His-48, by Pd- and Pt-substituted hemes in myoglobin proceed at rates of 9 1 x 1(P and 1.2x lO s", respectively. The difference in rates for electron transfer between Fe (heme) and Mg or Zn(porphyrin) centers in [a(Fe(II)P),j3(M T)] hemoglobin hybrids indicates a direct process as opposed to the involvement of a conformational gate. Using [Co(NH3)5Cl] to quench the Zn state, a rate constant of 2.4 x 10 s has been measured for back electron transfer within [a(Zn- -P)i8(Fe(III)CN)]. ... [Pg.39]

The field of modified electrodes spans a wide area of novel and promising research. The work dted in this article covers fundamental experimental aspects of electrochemistry such as the rate of electron transfer reactions and charge propagation within threedimensional arrays of redox centers and the distances over which electrons can be transferred in outer sphere redox reactions. Questions of polymer chemistry such as the study of permeability of membranes and the diffusion of ions and neutrals in solvent swollen polymers are accessible by new experimental techniques. There is hope of new solutions of macroscopic as well as microscopic electrochemical phenomena the selective and kinetically facile production of substances at square meters of modified electrodes and the detection of trace levels of substances in wastes or in biological material. Technical applications of electronic devices based on molecular chemistry, even those that mimic biological systems of impulse transmission appear feasible and the construction of organic polymer batteries and color displays is close to industrial use. [Pg.81]

Figure 17.4 Cartoon representation of strategies for studying and exploiting enzymes on electrodes that have been used in electrocatalysis for fuel cells, (a) Attachment or physisorption of an enzyme on an electrode such that redox centers in the protein are in direct electronic contact with the surface, (b) Specific attachment of an enzyme to an electrode modified with a substrate, cofactor, or analog that contacts the protein close to a redox center. Examples include attachment of the modifier via a conductive linker, (c) Entrapment of an enzyme within a polymer containing redox mediator molecules that transfer electrons to/from centers in the protein, (d) Attachment of an enzyme onto carbon nanotubes prepared on an electrode, giving a large surface area conducting network with direct electron transfer to each enzyme molecule. Figure 17.4 Cartoon representation of strategies for studying and exploiting enzymes on electrodes that have been used in electrocatalysis for fuel cells, (a) Attachment or physisorption of an enzyme on an electrode such that redox centers in the protein are in direct electronic contact with the surface, (b) Specific attachment of an enzyme to an electrode modified with a substrate, cofactor, or analog that contacts the protein close to a redox center. Examples include attachment of the modifier via a conductive linker, (c) Entrapment of an enzyme within a polymer containing redox mediator molecules that transfer electrons to/from centers in the protein, (d) Attachment of an enzyme onto carbon nanotubes prepared on an electrode, giving a large surface area conducting network with direct electron transfer to each enzyme molecule.
In contrast to the molecular wire of molecular interface, electron mediators are covalently bound to a redox enzyme in such a manner as an electron tunneling pathway is formed within the enzyme molecule. Therefore, enzyme-bound mediators work as molecular interface between an enzyme and an electrode. Degani et al. proposed the intramolecular electron pathway of ferrocene molecules which were covalently bound to glucose oxidase [ 4 ]. However, few fabrication methods have been developed to form a monolayer of mediator-modified enzymes on the electrode surface. We have succeeded in development of a novel preparation of the electron transfer system of mediator-modified enzyme by self-assembly in a porous gold-black electrode as schematically shown in Fig.12 [14]. [Pg.344]

Some of the materials highlighted in this review offer novel redox-active cavities, which are candidates for studies on chemistry within cavities, especially processes which involve molecular recognition by donor-acceptor ii-Jt interactions, or by electron transfer mechanisms, e.g. coordination of a lone pair to a metal center, or formation of radical cation/radical anion pairs by charge transfer. The attachment of redox-active dendrimers to electrode surfaces (by chemical bonding, physical deposition, or screen printing) to form modified electrodes should provide interesting novel electron relay systems. [Pg.146]

While the variety of NPs used in catalytic and sensor applications is extensive, this chapter will primarily focus on metallic and semiconductor NPs. The term functional nanoparticle will refer to a nanoparticle that interacts with a complementary molecule and facilitate an electrochemical process, integrating supramolecular and redox function. The chapter will first concentrate on the role of exo-active surfaces and core-based materials within sensor applications. Exo-active surfaces will be evaluated based upon their types of molecular receptors, ability to incorporate multiple chemical functionalities, selectivity toward distinct analytes, versatility as nanoscale receptors, and ability to modify electrodes via nanocomposite assemblies. Core-based materials will focus on electrochemical labeling and tagging methods for biosensor applications, as well as biological processes that generate an electrochemical response at their core. Finally, this chapter will shift its focus toward the catalytic nature of NPs, discussing electrochemical reactions and enhancement in electron transfer. [Pg.303]

Long range electron-transfer has also been demonstrated within the complex between zinc-substituted cytochrome c peroxidase and cyt c 59). The kinetics of intramolecular electron-transfer from Ru(II) to Fe(III) in ruthenium modified cyt c has also been investigated 58). [Pg.119]

Abstract. Cross sections for electron transfer in collisions of atomic hydrogen with fully stripped carbon ions are studied for impact energies from 0.1 to 500 keV/u. A semi-classical close-coupling approach is used within the impact parameter approximation. To solve the time-dependent Schrodinger equation the electronic wave function is expanded on a two-center atomic state basis set. The projectile states are modified by translational factors to take into account the relative motion of the two centers. For the processes C6++H(1.s) —> C5+ (nlm) + H+, we present shell-selective electron transfer cross sections, based on computations performed with an expansion spanning all states ofC5+( =l-6) shells and the H(ls) state. [Pg.121]

Figure 3.9 Schematic illustration of the processes that can occur at a modified electrode, where P represents a reducible substance in a film on the electrode surface and A a species in solution. The processes shown are as follows (1) heterogeneous electron transfer to P to produce the reduced form Q (2) electron transfer from Q to another P in the film (electron diffusion or electron hopping in the film) (3) electron transfer from Q to A at the film/solution interface (4) penetration of A into the film (where it can also react with Q or at the substrate/film interface) (5) movement (mass transfer) of Q within the film (6) movement of A through a pinhole or channel in the film to the substrate, where it can be reduced. From A.J. Bard and L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd Edition, Wiley, 2001. Reprinted by permission of John Wiley Sons, Inc... Figure 3.9 Schematic illustration of the processes that can occur at a modified electrode, where P represents a reducible substance in a film on the electrode surface and A a species in solution. The processes shown are as follows (1) heterogeneous electron transfer to P to produce the reduced form Q (2) electron transfer from Q to another P in the film (electron diffusion or electron hopping in the film) (3) electron transfer from Q to A at the film/solution interface (4) penetration of A into the film (where it can also react with Q or at the substrate/film interface) (5) movement (mass transfer) of Q within the film (6) movement of A through a pinhole or channel in the film to the substrate, where it can be reduced. From A.J. Bard and L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd Edition, Wiley, 2001. Reprinted by permission of John Wiley Sons, Inc...

See other pages where Modified electron transfer within is mentioned: [Pg.86]    [Pg.103]    [Pg.45]    [Pg.614]    [Pg.39]    [Pg.114]    [Pg.326]    [Pg.149]    [Pg.46]    [Pg.763]    [Pg.595]    [Pg.397]    [Pg.570]    [Pg.120]    [Pg.67]    [Pg.349]    [Pg.350]    [Pg.46]    [Pg.46]    [Pg.50]    [Pg.97]    [Pg.240]    [Pg.28]    [Pg.31]    [Pg.180]    [Pg.103]    [Pg.129]    [Pg.356]    [Pg.297]    [Pg.189]    [Pg.420]    [Pg.505]    [Pg.208]    [Pg.485]    [Pg.25]    [Pg.214]    [Pg.283]   
See also in sourсe #XX -- [ Pg.107 , Pg.108 ]




SEARCH



Electron transfers within

© 2024 chempedia.info