Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Model-generated pressure-temperature

Figure 3 Model-generated pressure-composition phase diagram representing three- and four-phase ecjuilibria at constant temperature. Figure 3 Model-generated pressure-composition phase diagram representing three- and four-phase ecjuilibria at constant temperature.
The pressure range of about 60-360 bar and temperature range from 35-70 °C are involved. Table 3 reports the results of the solubility calculations with 18 selected models. An important point must be emphasized, the Wong-Sandler mixing rule coupled with the UNIQUAC model generated a serious instability such that it was impossible to converge. Table 4 illustrates the variation of solid solubility and mixture density for a typical binary mixture. [Pg.353]

If no experimental VI. R data are available, the program can be used for predictions using internally generated liquid mole fractions of species 1 in the range from 0 to 1 at intervals of 0.1. In this case the user must provide all model parameters and temperature in addition to pure component critical temperature and pressure, acentric factor, and the kti parameter of the PRSV equation of state for each compound. An example is given below (Example D.5.C) for this mode of operation of the program. [Pg.148]

Unlike most model-generation software described in the literature, RMG correctly handles pressure and temperature variations it does this by using k(T,P) computed for the chemically-activated reactions at discrete (T,P) to determine coefficients in a Chebyshev form (Venkatesh et al., 1997) suitable for use in the differential equation solver. [Pg.27]

FTS pressure drop data for a 325 x 2300 and 450 x 2750 screen was collected in LH2, and also in GHe, to validate the room temperature model. In addition, unreported LOX FTS data from tests in 2010 using the exact same 325 x 2300 screen sample are also included for comparison. Figure 9.13 plots a typical test run in LH2 for the 325 x 2300 and 450 x 2750 screens where the DPT reading across the screen is plotted as a function of liquid hydrogen flow rate. Solid curves are model generated curves using room temperature prediction values for Dutch Twills screens in Equation (9.1). Parameters for the 450 x 2750 screen are taken from Chapter 4. [Pg.229]

The heated gas coefficients were determined in the same manner as the subcooled liquid coefficients. For each heated gas data point, a corresponding model generated saturated bubble point was calculated at each liquid temperature. For a given screen, pressurant gas, and cryogenic liquid, the heated gas loss, defined as the ratio of bubble point pressures ... [Pg.282]

FIGURE 11.3 Model Generated 325 x 2300 Reseal Pressure Ratio as a Function of the Reduced Temperature for Normally Saturated Liquid Taken Over the Range of Conditions of the Data. [Pg.294]

FIGURE 11.7 (a) Data and (b) Model Generated Bubble Point as a Function of the Liquid Temperature and Pressure at the LAD Screen for a 325 x 2300 Mesh in Liquid Nitrogen using Gaseous Helium as a Pressurant. The black line is the nitrogen saturation curve. Color indicates magnitude of the reseal point. [Pg.297]

Recently, robust developments in the capabilities of computers have led to the modeling of transient turbulent flows becoming much less challenging. The experimental analysis of PCD, which requires sophisticated measurements (e.g., LDA, PDA, pressure, temperature, noise, etc.) is difficult, hostile (e.g., high noise level, around 110-130 dB) and expensive to carry out in comparison with numerical simulations (Zbicinski, 2002). Computational fluid dynamics (CFD) models for a steady or transient flow, for example, as generated by the pulse combustor, differ... [Pg.75]

The Hydrodynamic Hot Spot Model can be used to evaluate the relative effect of explosive shock sensitivity as a function of composition, pressure, temperature, and density (as represented by the number and sizes of the holes present for hot spot generation). [Pg.187]

Figure 3.23 represents the pressure, temperature and internal flow profiles obtained from the results of the simplified model. These profiles are used as initial estimates to enhance the convergence of the rigorous VDU model. We use all major liquid products except for VR, most of the circulation rates and temperature changes of pumparound streams, and flash zone temperature to specify the column model as shown in Figure 3.24. Figures 3.25 to 3.27 show the predictions of the rigorous VDU model for column temperature profile, D1160 curve of VGO and product yields. The results demonstrate that the two-step approach of model development generates accurate predictions on key operation and production variables of VDU. Figure 3.23 represents the pressure, temperature and internal flow profiles obtained from the results of the simplified model. These profiles are used as initial estimates to enhance the convergence of the rigorous VDU model. We use all major liquid products except for VR, most of the circulation rates and temperature changes of pumparound streams, and flash zone temperature to specify the column model as shown in Figure 3.24. Figures 3.25 to 3.27 show the predictions of the rigorous VDU model for column temperature profile, D1160 curve of VGO and product yields. The results demonstrate that the two-step approach of model development generates accurate predictions on key operation and production variables of VDU.
These transient results are significantly different from those generated with the RELAP5-3D model (Section 12.5.2.5), due to the many differences in HRS models. The TRACE model utilizes pressurized water as the working fluid, while the RELAP model utilizes NaK. Water requires less pumping power than NaK however, water has a larger film temperature drop. Descriptions of the TRACE and RELAP HRS models can be found in Sections 12.4.1.6 and 12.5.1.6. [Pg.630]

The quantities appearing in the equations are divided into input variables and output variables or responses of the model. The responses would be the predictions of experimentally observed entities or their known functions. Actual responses, typical for combustion research, are the intensity of a light beam, the voltage generated by a pressure transducer, etc. The researcher is interested, however, in concentrations of species as well as their logarithms and ratios, pressures, temperatures, ignition delay times, luminosity of flames, amounts of soot formed, etc. They can be taken for responses but only when the instrumental functions, i.e., the relationships between the actual responses and the entities considered, are known precisely. [Pg.424]

The simulation models of the flow-sheeting system must make frequent requests for properties at specific temperatures, pressures, and compositions. Computer-program calls for such data are usually made in a rigorously defined manner, which is independent of both the point data generation models and the particular components. These point generation routines provide the property values, using selected methods that base their calculations on a set of parameters for each component. [Pg.76]

IMAS has a facility called EXPLORE allows the analyst to specify which indicators (e.g., temperatures, pressures, valve settings) are present, and which are absent in a particular scenario. EXPLORE then traverses the various links in the mental model representation network and generates a report that simulates the worker s thinking processes. This form of simulation provides useful information to the analyst with regard to the worker s capability to achieve correct diagnoses. Embrey (1985) gives an example of these simulations for the mental model in Figure 4.13. [Pg.187]


See other pages where Model-generated pressure-temperature is mentioned: [Pg.88]    [Pg.88]    [Pg.218]    [Pg.797]    [Pg.824]    [Pg.441]    [Pg.115]    [Pg.724]    [Pg.28]    [Pg.187]    [Pg.157]    [Pg.274]    [Pg.531]    [Pg.433]    [Pg.275]    [Pg.276]    [Pg.278]    [Pg.282]    [Pg.294]    [Pg.295]    [Pg.296]    [Pg.297]    [Pg.297]    [Pg.298]    [Pg.326]    [Pg.115]    [Pg.192]    [Pg.263]    [Pg.318]    [Pg.368]    [Pg.255]    [Pg.367]    [Pg.515]    [Pg.357]    [Pg.365]    [Pg.366]   


SEARCH



Generating models

Generators pressurized

Model Generator

Model generation

Pressure generators

Pressure modelling

Temperature model

Temperature modelling

© 2024 chempedia.info