Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mixing model

Substrate and product inhibitions analyses involved considerations of competitive, uncompetitive, non-competitive and mixed inhibition models. The kinetic studies of the enantiomeric hydrolysis reaction in the membrane reactor included inhibition effects by substrate (ibuprofen ester) and product (2-ethoxyethanol) while varying substrate concentration (5-50 mmol-I ). The initial reaction rate obtained from experimental data was used in the primary (Hanes-Woolf plot) and secondary plots (1/Vmax versus inhibitor concentration), which gave estimates of substrate inhibition (K[s) and product inhibition constants (A jp). The inhibitor constant (K[s or K[v) is a measure of enzyme-inhibitor affinity. It is the dissociation constant of the enzyme-inhibitor complex. [Pg.131]

LDPE tabular reactor is divided into several reaction zon acoirding to fhe feed injection points. Here we apply mixing cell model for tobidar rcsictor which considea s the reactor axis as series of cells which is conceptually the same as CSTRs in series. In tiiis study 40 cells are used for each reactor spool of 10 m long. The mass balant equation of a single cell at steady state can be written as follows. [Pg.838]

Janecky, D.R. and Seyfried, W.E. Jr. (1984) Formation of massive sulfide deposits on oceanic ridge crests incremental reaction models for mixing between hydrothermal solutions and seawater. Geochint. Cosmochim. Acta, 48, 2723-2738. [Pg.276]

In practice, it is often possible with stirred-tank reactors to come close to the idealized mixed-flow model, providing the fluid phase is not too viscous. For homogenous reactions, such reactors should be avoided for some types of parallel reaction systems (see Figure 5.6) and for all systems in which byproduct formation is via series reactions. [Pg.128]

Stirred tank model A simple convective flow pattern in tanks, characterized by complete and instantaneous mixing in all directions. Also called the continuously stirred tank reaction or the mixing tank model. See Eqs. (3) and (4) and Figure 2. [Pg.38]

Fig. 30.1. Volumes of minerals precipitated during a reaction model simulating the mixing at reservoir temperature of seawater into formation fluids from the Miller, Forties, and Amethyst oil fields in the North Sea. The reservoir temperatures and compositions of the formation fluids are given in Table 30.1. The initial extent of the system in each case is 1 kg of solvent water. Not shown for the Amethyst results are small volumes of strontianite, barite, and dolomite that form during mixing. Fig. 30.1. Volumes of minerals precipitated during a reaction model simulating the mixing at reservoir temperature of seawater into formation fluids from the Miller, Forties, and Amethyst oil fields in the North Sea. The reservoir temperatures and compositions of the formation fluids are given in Table 30.1. The initial extent of the system in each case is 1 kg of solvent water. Not shown for the Amethyst results are small volumes of strontianite, barite, and dolomite that form during mixing.
The mixed-potential model demonstrated the importance of electrode potential in flotation systems. The mixed potential or rest potential of an electrode provides information to determine the identity of the reactions that take place at the mineral surface and the rates of these processes. One approach is to compare the measured rest potential with equilibrium potential for various processes derived from thermodynamic data. Allison et al. (1971,1972) considered that a necessary condition for the electrochemical formation of dithiolate at the mineral surface is that the measmed mixed potential arising from the reduction of oxygen and the oxidation of this collector at the surface must be anodic to the equilibrium potential for the thio ion/dithiolate couple. They correlated the rest potential of a range of sulphide minerals in different thio-collector solutions with the products extracted from the surface as shown in Table 1.2 and 1.3. It can be seen from these Tables that only those minerals exhibiting rest potential in excess of the thio ion/disulphide couple formed dithiolate as a major reaction product. Those minerals which had a rest potential below this value formed the metal collector compoimds, except covellite on which dixanthogen was formed even though the measured rest potential was below the reversible potential. Allison et al. (1972) attributed the behavior to the decomposition of cupric xanthate. [Pg.9]

Table 4.1 shows the measured rest potential of sulphide electrode in thio collector solutions at pH = 6.86 and the equilibrium potential calculated for possible processes. In terms of the mixed potential model, the reaction products should be metal collector salts between four thio collectors and galena and jamesonite and should be disulphide between four thio collectors and pyrite and... [Pg.63]

Figure 4.1 The mixed potential model of redox reaction on sulphide surface... Figure 4.1 The mixed potential model of redox reaction on sulphide surface...
In a linear well-mixed reactor model the flushing rate is kv = 0.5 h-1, the total reaction rate constant of a specific chemical, ot =1.5 h-1. What is the retention factor of the reactor for the considered chemical, that is, what percentage of the chemical is reacting in the reactor How does this percentage change when the input of the chemical is doubled ... [Pg.487]

Mehta (34) has carried out a reactor network optimization study to find improved designs for the production of acrylonitrile in a collaboration between UMIST and one of its industrial partners. Most industrial installations employ fluidized-bed reactors (BP/Sohio process) with a well-mixed reaction zone. Previous process improvements have mainly resulted from better catalysts, which have produced an increase in yield from 58% to around 80%. The reaction model employed in the optimization study is taken from Ref. 81 and considers seven reactions and eight components. Air, pure oxygen, and propylene are available as raw material streams. The optimization study assumes negligible pressure drop along the reaction sections, isothermal and isobaric operation, and negligible mass gas-solid transfer effects. [Pg.447]

In several recent studies an assumption is made concerning the homogeneous-heterogeneous mechanisms of oxidation reactions as a reason for critical effects, in particular in the oxidation of cyclohexane over zeolites [131] and of CO over Pd [132-134] and V [135] catalysts. Berman and Elinek [131] have established in their experiments that cyclohexane oxidation over zeolites follows a mixed homogeneous-heterogeneous mechanism. Studies of the mathematical reaction model written down in accordance with the law of mass action showed that the system can have from one to three steady states. When the steady state is unique, there exists a region of parameters... [Pg.265]

The objective of the following model is to investigate the extent to which Computational Fluid Mixing (CFM) models can be used as a tool in the design of industrial reactors. The commercially available program, Fluent , is used to calculate the flow pattern and the transport and reaction of chemical species in stirred tanks. The blend time predictions are compared with a literature correlation for blend time. The product distribution for a pair of competing chemical reactions is compared with experimental data from the literature. [Pg.795]

In the reaction model used here it was assumed that small-scale mixing only affected the first reaction and that once this reaction had occurred, the species were locally well mixed. As a result, small-scale... [Pg.797]

The Tafel expressions for both the anodic and the cathodic reaction can be directly incorporated into a mixed potential model. In modeling terms, a Tafel relationship can be defined in terms of the Tafel slope (b), the equilibrium potential for the specific half-reaction ( e), and the exchange current density (70), where the latter can be easily expressed as a rate constant, k. An attempt to illustrate this is shown in Fig. 10 using the corrosion of Cu in neutral aerated chloride solutions as an example. The equilibrium potential is calculated from the Nernst equation e.g., for the 02 reduction reaction,... [Pg.216]

Relationships such as that in Eq. (12) offer convenient means of testing the validity of mixed potential models by comparing electrochemically determined parameters (in this case, a reaction order based on measured Tafel slopes) to values measured by other means. One such example would be the corrosion of U02 (nuclear fuel) in aerated neutral solutions containing added carbonate (6). In the presence of carbonate, corrosion product deposits are avoided, since the U02+ corrosion product is solubilized by complexation with the carbonate. Measured Tafel slopes yield a predicted reaction order of n0l = 0.67 with respect to 02 for the overall corrosion reaction ... [Pg.218]

Many of these approaches have been used in mixed potential models to predict the behavior of copper nuclear waste containers in a compacted clay environment (22), and to predict the corrosion rate of nuclear fuel inside these containers once they have failed and water allowed to contact the nuclear fuel (U02) wasteform (6). The container is lined with a carbon shell liner to give it mechanical integrity. Consequently, when the container floods with water on failure, two corrosion processes are possible, corrosion of the U02 wasteform (conservatively assumed to be unprotected by the Zircalloy cladding within which it is encapsulated) and corrosion of the carbon steel liner. The reaction scheme underlying... [Pg.230]

Figure 1.9 is the Pourbaix diagram for iron and some of its compounds in an aqueous system at 25°C. The equilibrium potential of the reaction Fe° = Fe2+ + 2e falls outside the stability region of water represented by dashed lines. Hence, measurement of the equilibrium electrode potential is complicated by the solvent undergoing a reduction reaction, while the iron is undergoing electrochemical oxidation. This is the basis of the mixed potential model of corrosion. [Pg.31]

We have described a mixed MOVB model for describing the potential energy surface of reactive systems, and presented results from applications to SN2 reactions in aqueous solution. The MOVB model is based on a BLW method to define diabatic electronic state functions. Then, a configuration interaction Hamiltonian is constructed using these diabatic VB states as basis functions. The computed geometrical and energetic results for these systems are in accord with previous experimental and theoretical studies. These studies show that the MOVB model can be adequately used as a mapping potential to derive solvent reaction coordinates for... [Pg.179]


See other pages where Reaction mixing model is mentioned: [Pg.220]    [Pg.6]    [Pg.246]    [Pg.254]    [Pg.193]    [Pg.380]    [Pg.385]    [Pg.681]    [Pg.348]    [Pg.293]    [Pg.3]    [Pg.7]    [Pg.311]    [Pg.99]    [Pg.518]    [Pg.101]    [Pg.134]    [Pg.134]    [Pg.424]    [Pg.234]    [Pg.211]    [Pg.219]    [Pg.130]    [Pg.592]    [Pg.118]    [Pg.220]    [Pg.16]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Mixed models

Mixing models

Modeling mixing

Reaction/diffusion model mixing theory

© 2024 chempedia.info