Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mineral xanthate-sulfide

For butyl xanthate-sulfide mineral system, the relevant reactions are as follows ... [Pg.111]

Separation or nonsulfide minerals from sulfide minerals is relatively easy separating sulfides from one another needs carefol control of conditions such as pH and depressant concentration Separating finely disseminated Cu-Zn sulfide is a problem PbS is Homed first by xanthate by depressing ZnS by cyanide Inter ZirS is activated by Cu2+... [Pg.1051]

Bogdanov Xanthate-sulfide mineral Isotope method ... [Pg.171]

Fig. 1. Effect of particle size on the flotation recovery of a sulfide mineral. Mineral chalcocite [2112-20-9J, CU2S reagent potassium ethyl xanthate,... Fig. 1. Effect of particle size on the flotation recovery of a sulfide mineral. Mineral chalcocite [2112-20-9J, CU2S reagent potassium ethyl xanthate,...
Activators enhance the adsorption of collectors, eg, Ca " in the fatty acid flotation of siUcates at high pH or Cu " in the flotation of sphalerite, ZnS, by sulfohydryl collectors. Depressants, on the other hand, have the opposite effect they hinder the flotation of certain minerals, thus improving selectivity. For example, high pH as well as high sulfide ion concentrations can hinder the flotation of sulfide minerals such as galena (PbS) in the presence of xanthates (ROCSS ). Hence, for a given fixed collector concentration there is a fixed critical pH that defines the transition between flotation and no flotation. This is the basis of the Barsky relationship which can be expressed as [X ]j[OH ] = constant, where [A ] is the xanthate ion concentration in the pulp and [Oi/ ] is the hydroxyl ion concentration indicated by the pH. Similar relationships can be written for sulfide ion, cyanide, or thiocyanate, which act as typical depressants in sulfide flotation systems. [Pg.49]

AEROPHINE 3418A promoter is widely used ia North and South America, AustraHa, Europe, and Asia for the recovery of copper, lead, and ziac sulfide minerals (see Elotatton). Advantages ia comparison to other collectors (15) are said to be improved selectivity and recoveries ia the treatment of complex ores, higher recoveries of associated precious metals, and a stable grade—recovery relationship which is particularly important to the efficient operation of automated circuits. Additionally, AEROPHINE 3418A is stable and, unlike xanthates (qv), does not form hazardous decomposition products such as carbon disulfide. It is also available blended with other collectors to enhance performance characteristics. [Pg.319]

Aetivators. These are used to make a mineral surface amenable to collector coating. Copper ion is used, for example, to activate sphalerite (ZnS), rendering the sphalerite surface capable of absorbing a xanthate or dithiophosphate collector. Sodium sulfide is used to coat oxidized copper and lead minerals so that they can be floated by a sulfide mineral collector. [Pg.1809]

Xanthate compounds are widely used as collectors in flotation. Their function is to render the mineral surface hydrophobic and thus facilitate bubble attachment. The adsorption of xanthates onto sulfide minerals occurs via an electrochemical mechanism involving the reduction of oxygen and the anodic adsorption of xanthate. [Pg.261]

The adsorption of collectors on sulfide mineral occurs by two separate mechanisms chemical and electrochemical. The former results in the presence of chemisorbed metal xanthate (or other thiol collector ion) onto the mineral surface. The latter yields an oxidation product (dixanthogen if collector added is xanthate) that is the hydrophobic species adsorbed onto the mineral surface. The chemisorption mechanism is reported to occur with galena, chalcocite and sphalerite minerals, whereas electrochemical oxidation is reportedly the primary mechanism for pyrite, arsenopyrite, and pyrrhotite minerals. The mineral, chalcopyrite, is an example where both the mechanisms are known to be operative. Besides these mechanisms, the adsorption of collectors can be explained from the point of interfacial energies involved between air, mineral, and solution. [Pg.201]

The flotation of sphalerite, the sulfidic mineral source of zinc, is next considered as an example to illustrate the role of activators. This mineral is not satisfactorily floated solely by the addition of the xanthate collector. This is due to the fact that the collector products formed, such as zinc xanthate, are soluble in water, and so do not furnish a hydrophobic film around the mineral particles. It is necessary to add copper sulfate which acts as an... [Pg.204]

The copper sulfide formed on the surface of the sphalerite mineral reacts readily with the xanthate, and forms insoluble copper xanthate, which makes the sphalerite surface hydro-phobic. Such a reaction for activating sphalerite occurs whenever the activating ions are present in the solution. It is thus necessary to deactivate sphalerite (to prevent the occurrence of natural activation) in the case of some ores. With lead-zinc ores, for example, natural activation occurs due to Pb2+ in solution... [Pg.205]

The products of hydrolysis and dissociation depend on the pH. In an acid medium, hydrogen sulfide, which has no depressing action, evolves. It is, therefore, necessary to use alkaline circuits in which HS, predominates. These sulfide ions are adsorbed on the copper sulfide mineral surface and react with the surface previously coated with cuprous xanthate. The reaction causes desorption of the collector, and as a result of this desorption the copper sulfide minerals generally become hydrophilic. There is, however, no action of the sulfide ions on molybdenite, and so molybdenite retains its hydrophobic character. [Pg.205]

Suitable collectors can render hydrophilic minerals such as silicas or hydroxides hydrophobic. An ideal collector is a substance that attaches with the help of a functional group to the solid (mineral) surface often by ligand exchange or electrostatic interaction, and exposes hydrophobic groups toward the water. Thus, amphi-patic substances (see Chapter 4.5), such as alkyl compounds with C to C18 chains are widely used with carboxylates, or amine polar heads. Surfactants that form hemicelles on the surface are also suitable. For sulfide minerals mercaptanes, monothiocarbonates and dithiophosphates are used as collectors. Xanthates or their oxidation products, dixanthogen (R - O - C - S -)2 are used as collectors for... [Pg.279]

Amphipathic substances such as we have discussed throughout this chapter are used as collectors. Alkyl compounds with C8 to C18 chains are widely used with carboxylate, sulfate, or amine polar heads. For sulfide minerals, sulfur-containing compounds such as mercaptans, monothiocarbonates, and dithiophosphates are used as collectors. The most important collectors for sulfides are xanthates, the general formula for which is... [Pg.341]

Depressants (or deactivators) are chemicals that ensure that undesired particles remain hydrophilic and therefore do not get floated. Conversely to the activation of zinc sulfide by copper ions above, zinc ions from zinc sulfate act as a depressant for zinc sulfide. Another example is the use of cyanide to complex with copper and prevent adsorption of collectors in the flotation of base-metal sulfides with xanthates. There are many other depressants but they tend to be quite specific to one of a few types of minerals. In some cases, such as some uses of cyanide as a depressant, the mechanism of depressant action remains unclear. [Pg.251]

The type of the oxidation product on galena is independent of the chemical environment during preparation. Rao152) measured the adsorption heat of K amyl xanthate (KAX) on unactivated and Cu2+-activated pyrrhotite (FeS) and compared his results with heats of the reaction between KAX and Fe2+ or Cu2+ salts. With the unactivated mineral, the interaction involves a chemical reaction of xanthate with Fe2+ salts present at the interface (i.e. not bound to the crystal surface). The adsorption enthalpy is identical with the formation of Fe2+ amyl xanthate FeS04 + 2 KAX —> FeX2 + K2S04, and -AH = 97.45 kJ/mol Fe2+). As revealed from the enthalpy values and the analysis of anions released into the solution, the interaction of xanthate with Cu2+-activated pyrrhotite consists of xanthate adsorption by exchange for sulfate ions (formed by an oxidation of sulfides) at isolated patches (active spots), and by further multilayer formation of xanthate. The adsorption heat of KAX on pyrrhotite at the initial pH 4.5 was - AH (FeS unactivated) = 93.55 kJ/mol Fe2+ and - AH (FeS activated) = 70.03 kJ/mol Cu2+. [Pg.132]

The rest of the chapter has been devoted to special topics and in materials science there are many possibilities. Those selected include the mechanism of the flotation of minerals in which the addition of a certain organic to the solution causes a specific mineral to become hydrophobic so that it is exposed to air bubbles, the bubbles stick to it and buoy the mineral up to the surface, leaving unwanted minerals on the bottom of the tank. It turns out that the mechanism of this phenomenon involves a mixed-potential concept in which the anodic oxidation of the organic collector, often a xanthate, allows it to form a hydrophobic film upon a semiconducting sulfide or oxide, but only if there is a partner reaction of oxygen reduction. This continues until there is almost full coverage with the dixanthate, and the surface is thereby made water-repelling. [Pg.262]

Promoters or collectors provide the substances to be separated with a water-repellent air-avid coating that will adhere to air bubbles. Typical collectors for flotation of metallic sulfides and native metals are dithiophosphates and xanthates. Fatty acids and their soaps, petroleum sulfonates, and sulfonated fatty acids are widely used as collectors in flotation of fluorspar, iron ore, phosphate rock, and others. Fuel oil and kerosene are used as collectors for coal, graphite, sulfur, and molybdenite. Cationic collectors such as fatty amines and amine salts are widely used for separation of quartz, potash, and silicate minerals. [Pg.105]

A significant development in this regard was the correlation of the solubility products of a series of heavy metal-ethyl xanthate salts with the floatability of corresponding sulfide minerals by (Kakovsky, 1980). He found the decrease in the order of the solubility product of sulfide minerals to be in line with the increase in the order of their floatability. From exchange reactions of lead-diethyl xanthate, the well-known Barsky equation can be derived ... [Pg.2]

The reactions between xanthate and sulfide minerals can be given as follows + 2X = MX ... [Pg.113]

Solubility products of collector-metallic ion compounds (see Appendix C) suggest that the sulfide mineral collectors such as xanthates, mercaptans and thiophosphates containing sulfur bonding atom in the minerophilic group can form compounds of low solubility products with ions of elements with affinity for copper(II). They can not form insoluble... [Pg.147]

Collectors for nonsulfide minerals containing O atom, such as fatty acids and sulfonates, react with various metallic ions by ionic bond, and they have high solubility in water. The solubility becomes low only when the hydrocarbon chains in the molecules are long. In contrast, collectors for sulfide minerals, such as xanthates possessing only a short chain, the S bonding atom reacts with metallic ions to form covalent bonds with lower polarity. [Pg.149]

I. Induction effect in molecules of thiocarbonates Among the derivatives of thiocarbonates, dithiocarbonates (xanthates) are widely used as collectors for sulfide minerals. In addition, monothiocarbonates and trithiocarbonates are also used. Bonding atoms and central atoms of all of those above thiocarbamates are the same, but the linking atoms are different ... [Pg.150]

In summary, the order of magnitude of solubility products of silver salts (in pL) and collective power for sulfide minerals are as follows dithiocarbamate < xanthate < dithiophosphate as shown in Table 5.9. [Pg.152]

This includes reactions of the polymer groups with metallic sites on the particle surface that may result in the formation of stable or insoluble compounds through covalent, ionic or coordination bonding. Carboxyl flocculants such as polyacrylic acid and carboxyl-methyl cellulose can chemisorb on the surface of calcite and sphalerite which have calcium or zinc sites on them. Certain flocculants, such as cellulose and starch with xanthate and polyacrylamide with dithiocarbamate with high chemically active groups, have been found to exhibit selective reaction with sulfide minerals. Such complexing polymers have been investigated for their use in selective flocculation processes. [Pg.187]

Xanthates. [Hoechst AG] Sodium xanthogenates flotation collector for sulfide and sulfidized minerals. [Pg.410]


See other pages where Mineral xanthate-sulfide is mentioned: [Pg.171]    [Pg.50]    [Pg.411]    [Pg.149]    [Pg.261]    [Pg.202]    [Pg.204]    [Pg.781]    [Pg.256]    [Pg.29]    [Pg.781]    [Pg.112]    [Pg.12]    [Pg.397]    [Pg.130]    [Pg.150]    [Pg.779]    [Pg.96]    [Pg.6926]    [Pg.133]   
See also in sourсe #XX -- [ Pg.113 , Pg.114 ]




SEARCH



Sulfide mineralization

Sulfide minerals

Xanthates

Xanthation

© 2024 chempedia.info