Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microwave polymers

Since the renaissance of solid-phase organic chemistry in 1992, carbon-carbon bond formation reactions on solid support have probably been the best studied reactions. Many different facets of the Suzuki, Heck and Stille reactions have been evaluated. The influence of linkers, catalyst, solvents, microwave, polymer-bound aryl halides or polymer-bound arylboronic acids (or stannanes) have been studied in detail. [Pg.42]

New developments in the Suzuki cross-coupling reaction include the application of microwave, polymer-bound catalysts, nanoparticles, and ionic liquids as reaction medium. A discussion of these methods exceeds the scope of this chapter. [Pg.450]

Solution polymerization of VDE in fluorinated and fluorochlorinated hydrocarbons such as CEC-113 and initiated with organic peroxides (99), especially bis(perfluoropropionyl) peroxide (100), has been claimed. Radiation-induced polymerization of VDE has also been investigated (101,102). Alkylboron compounds activated by oxygen initiate VDE polymerization in water or organic solvents (103,104). Microwave-stimulated, low pressure plasma polymerization of VDE gives polymer film that is <10 pm thick (105). Highly regular PVDE polymer with minimized defect stmcture was synthesized and claimed (106). Perdeuterated PVDE has also been prepared and described (107). [Pg.386]

Other chemical apphcations being studied include the use of microwaves in the petroleum (qv) industry (175), chemical synthesis (176,177), preparation of semiconductor materials (178), and the processing of polymers (179). [Pg.346]

Electrical Properties. Polysulfones offer excellent electrical insulative capabiUties and other electrical properties as can be seen from the data in Table 7. The resins exhibit low dielectric constants and dissipation factors even in the GH2 (microwave) frequency range. This performance is retained over a wide temperature range and has permitted appHcations such as printed wiring board substrates, electronic connectors, lighting sockets, business machine components, and automotive fuse housings, to name a few. The desirable electrical properties along with the inherent flame retardancy of polysulfones make these polymers prime candidates in many high temperature electrical and electronic appHcations. [Pg.467]

Microwave or radio frequencies above 1 MHz that are appHed to a gas under low pressure produce high energy electrons, which can interact with organic substrates in the vapor and soHd state to produce a wide variety of reactive intermediate species cations, anions, excited states, radicals, and ion radicals. These intermediates can combine or react with other substrates to form cross-linked polymer surfaces and cross-linked coatings or films (22,23,29). [Pg.424]

Poljraer surfaces can be easily modified with microwave or radio-frequency-energized glow discharge techniques. The polymer surface cross-links or oxidizes, depending on the nature of the plasma atmosphere. Oxidizing (oxygen) and nonoxidizing (helium) plasmas can have a wide variety of effects on polymer surface wettability characteristics (92). [Pg.434]

The markets for polyetherimides arise to an extent from stricter regulations concerning flammability and smoke evolution coupled with such features as high strength, toughness and heat resistance. Application areas include car under-the-bonnet uses, microwave equipment, printed circuit boards and aerospace (including carbon-fibre-reinforced laminated materials). The polymer is also of interest in flim, fibre and wire insulation form. [Pg.526]

Polycarbonates based on tetramethylbisphenol A are thermally stable and have a high Vicat softening point of 196°C. On the other hand they have lower impact and notched impact resistance than the normal polymer. Blends with styrene-based polymers were introduced in 1980, and compared with PC/ABS blends, are claimed to have improved hydrolytic resistance, lower density and higher heat deflection temperatures. Suggested applications are as dishes for microwave ovens and car headlamp reflectors. [Pg.579]

PPO forms one of a group of rigid, heat-resistant, more-or-less selfextinguishing polymers with a good electrical and chemical resistance, low water absorption and very good dimensional stability. This has led to a number of applications in television such as tuner strips, microwave insulation components and transformer housings. The excellent hydrolytic stability has also led to applications in water distribution and water treatment applications such as in pumps, water meters, sprinkler systems and hot water tanks. It is also used in valves of drink vending machines. [Pg.589]

Good electrical insulation properties with a high dielectric strength and good microwave transparency but with a low tracking resistance typical of aromatic polymers with a high C H ratio in the structure. [Pg.737]

A novel use of the salt [BMIM][PFg] is to enhance microwave absorption and hence accelerate the rate of a reaction. Ley found that [BMIM][PFg] enhanced the rate of the microwave-promoted thionation of amides by a polymer-supported thionating agent [64]. [Pg.191]

Figure 36. Microwave conductivity transients of an n-type silicon/polymer (poly(epichlorhydrine-co-ethylenoxide-co-allyl-glycylether plus iodide) junction at 0 and -5V. Figure 36. Microwave conductivity transients of an n-type silicon/polymer (poly(epichlorhydrine-co-ethylenoxide-co-allyl-glycylether plus iodide) junction at 0 and -5V.
Color mimicking by means of electrochemistry, 361 Completion of oxidation for polymers and diffusion control, 414 Concentration effects of microwave energy, 442... [Pg.628]

This volume contains six chapters and a cumulative index for numbers 1-33. The topics covered include the potential of zero charge nonequilibrium fluctuation in the corrosion process conducting polymers, electrochemistry, and biomimicking processes microwave (photo)-electrochemistry improvements in fluorine generation and electronically conducting polymer films. [Pg.651]

Fibers of the conducting polymer polypvrrole are woven into radar camouflage cloth. Because it absorbs microwaves, rather than reflecting them back to their source, the cloth appears to be a patch of empty space on radar. [Pg.901]

Finally, dissolution of non-activated cellulose in LiCl/DMAc, and in ionic liquids has been accelerated by microwave irradiation [72,103,104], although the effect of microwave heating on the DP of the polymer has not been investigated. This last point is relevant in view of the fact that ILs are heated with exceptional efficiency by microwaves [105], so that care must be taken to avoid excessive localized heating that can induce chain degradation of the polymer during its dissolution. [Pg.118]

Abstract Current microwave-assisted protocols for reaction on solid-phase and soluble supports are critically reviewed. The compatibility of commercially available polymer supports with the relatively harsh conditions of microwave heating and the possibilities for reaction monitoring are discussed. Instrmnentation available for microwave-assisted solid-phase chemistry is presented. This review also summarizes the recent applications of controlled microwave heating to sohd-phase and SPOT-chemistry, as well as to synthesis on soluble polymers, fluorous phases and functional ionic liquid supports. The presented examples indicate that the combination of microwave dielectric heating with solid- or soluble-polymer supported chemistry techniques provides significant enhancements both at the level of reaction rate and ease of purification compared to conventional procedures. [Pg.80]


See other pages where Microwave polymers is mentioned: [Pg.662]    [Pg.318]    [Pg.243]    [Pg.304]    [Pg.459]    [Pg.140]    [Pg.375]    [Pg.422]    [Pg.423]    [Pg.53]    [Pg.442]    [Pg.609]    [Pg.921]    [Pg.606]    [Pg.332]    [Pg.264]    [Pg.214]    [Pg.409]    [Pg.499]    [Pg.628]    [Pg.642]    [Pg.28]    [Pg.28]    [Pg.29]    [Pg.42]    [Pg.114]    [Pg.141]    [Pg.12]    [Pg.34]    [Pg.62]    [Pg.83]    [Pg.84]   
See also in sourсe #XX -- [ Pg.40 , Pg.41 , Pg.42 ]




SEARCH



Microwave energy polymer processing

Microwave polymer processing reactors

Microwave reactions with polymer-supported reagents

Polymer Chemistry Under the Action of Microwave Irradiation

© 2024 chempedia.info