Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microstructure crystals

The polymers compared all have similar crystal structures but are different from polyethylene, which excludes the possibility for also including the latter in this series. Also note that the isotactic structure of these molecules permits crystallinity in the first place. With less regular microstructure, crystallization would not occur at all. [Pg.211]

K. Yada and K. lishi, Serpentine minerals hydrothermaUy synthesized and their microstructures,/. Crystal Growth, 24/25,1974, 627-30... [Pg.87]

Concerning high Tc superconductor of Bi-system, recent studies [1-4] on its microstructure, crystal grain size, the effect of the preparation condition on its properties, phase transformation, preparation of pure 2223 phase and doping etc were reported. [Pg.109]

Microstructure. Crystal size, porosity, and impurity phases play a major role in fixing the fracture characteristics and toughness of an abrasive grain. As an example, rapidly cooled fused aluminum oxide has a microcrystalline structure promoting toughness for heavy-duty grinding applications, whereas the same composition cooled slowly has a macrocrystalline structure more suitable for medium-duty grinding. [Pg.10]

This book is stmctured as follows Chapter 1 serves as a guide to polyolefin blends introducing this important class of materials, why they are important, typical systems studied, issues of fundamental and applied interest, and current trends. The contributed chapters are divided into two main categories polyolefin/polyolefin blends (Chapters 2-16) and polyolefin/nonpolyolefin blends (Chapters 17-21). Issues covered in these chapters include miscibility, phase behavior, functionalization, compatibilization, microstructure, crystallization, hierarchical morphology, and physical and mechanical properties. Most of the chapters are in the form of review articles. Some original articles are included to capture the latest development in polyolefin blends research. [Pg.684]

Microstructure. Whereas the predominate stmcture of polychloroprene is the head to tail /n7 j -l,4-chloroprene unit (1), other stmctural units (2,3,4) are also present. The effects of these various stmctural units on the chemical and physical properties of the polymer have been determined. The high concentration of stmcture (1) is responsible for crystallization of polychloroprene and for the abiUty of the material to crystallize under stress. Stmcture (3) is quite important in providing a cure site for vulcanization, but on the other hand reduces the thermal stabiUty of the polymer. Stmctures (3),(4), and especially (2) limit crystallization of the polymer. [Pg.539]

Fig. 5. A 90° polished cross section of a production white titania enamel, with the microstructure showing the interface between steel and direct-on enamel as observed by reflected light micrography at 3500 x magnification using Nomarski Interface Contrast (oil immersion). A is a steel substrate B, complex interface phases including an iron—nickel alloy C, iron titanate crystals D, glassy matrix E, anatase, Ti02, crystals and F, quart2 particle. Fig. 5. A 90° polished cross section of a production white titania enamel, with the microstructure showing the interface between steel and direct-on enamel as observed by reflected light micrography at 3500 x magnification using Nomarski Interface Contrast (oil immersion). A is a steel substrate B, complex interface phases including an iron—nickel alloy C, iron titanate crystals D, glassy matrix E, anatase, Ti02, crystals and F, quart2 particle.
Most materials scientists at an early stage in their university courses learn some elementary aspects of what is still miscalled strength of materials . This field incorporates elementary treatments of problems such as the elastic response of beams to continuous or localised loading, the distribution of torque across a shaft under torsion, or the elastic stresses in the components of a simple girder. Materials come into it only insofar as the specific elastic properties of a particular metal or timber determine the numerical values for some of the symbols in the algebraic treatment. This kind of simple theory is an example of continuum mechanics, and its derivation does not require any knowledge of the crystal structure or crystal properties of simple materials or of the microstructure of more complex materials. The specific aim is to design simple structures that will not exceed their elastic limit under load. [Pg.47]

To recapitulate, the legs of the imaginary tripod on which the structure of materials science is assembled are atoms and crystals phase equilibria microstructure. Of course, these are not wholly independent fields of study. Microstructure consists of phases geometrically disposed, phases are controlled by Gibbsian thermodynamics. [Pg.130]

Transmission electron microscopes (TEM) with their variants (scanning transmission microscopes, analytical microscopes, high-resolution microscopes, high-voltage microscopes) are now crucial tools in the study of materials crystal defects of all kinds, radiation damage, ofif-stoichiometric compounds, features of atomic order, polyphase microstructures, stages in phase transformations, orientation relationships between phases, recrystallisation, local textures, compositions of phases... there is no end to the features that are today studied by TEM. Newbury and Williams (2000) have surveyed the place of the electron microscope as the materials characterisation tool of the millennium . [Pg.221]

This kind of microstructure also influences other kinds of conductors, especially those with positive (PTC) or negative (NTC) temperature coefficients of resistivity. For instance, PTC materials (Kulwicki 1981) have to be impurity-doped polycrystalline ferroelectrics, usually barium titanate (single crystals do not work) and depend on a ferroelectric-to-paraelectric transition in the dopant-rich grain boundaries, which lead to enormous increases in resistivity. Such a ceramic can be used to prevent temperature excursions (surges) in electronic devices. [Pg.273]

Grain growth and other microstructural changes. When a deformed metal is heated, it will recrysiallise, that is to say, a new population of crystal grains will... [Pg.475]

As with chemical etches, developing optimum conversion coatings requires assessment of the microstructure of the steel. Correlations have been found between the microstructure of the substrate material and the nature of the phosphate films formed. Aloru et al. demonstrated that the type of phosphate crystal formed varies with the orientation of the underlying steel crystal lattice [154]. Fig. 32 illustrates the different phosphate crystal morphologies that formed on two heat-treated surfaces. The fine flake structure formed on the tempered martensite surface promotes adhesion more effectively than the knobby protrusions formed on the cold-rolled steel. [Pg.991]

The crystallization of glassy Pd-Ni-P and Pd-Cu-P alloys is complicated by the formation of metastable crystalline phaf s [26]. The final (stable) crystallization product consists of a mixture of a (Pd,Ni) or (Pd,Cu) fee solid solution and more than one kind of metal phosphide of low crystallographic symmetry. Donovan et al. [27] used transmission electron microscopy (TEM) and X-ray microanalysis to study the microstructure of slowly cooled crystalline Pd4oNi4oP2o- They identified the compositions of the metal phosphides to be Pd34Ni45P2j and Pdg8Ni[4Pjg. [Pg.295]

Finally, it should be noted that in both cases the effect of crystal defects and microstructural features must, in general, be to tend to make the corrosion less uniform and more localised. [Pg.36]

If we look at the mechanistic and crystallographic aspects of the operation of polycomponent electrodes, we see that the incorporation of electroactive species such as lithium into a crystalline electrode can occur in two basic ways. In the examples discussed above, and in which complete equilibrium is assumed, the introduction of the guest species can either involve a simple change in the composition of an existing phase by solid solution, or it can result in the formation of new phases with different crystal structures from that of the initial host material. When the identity and/or amounts of phases present in the electrode change, the process is described as a reconstitution reaction. That is, the microstructure is reconstituted. [Pg.365]


See other pages where Microstructure crystals is mentioned: [Pg.307]    [Pg.93]    [Pg.10]    [Pg.341]    [Pg.497]    [Pg.190]    [Pg.40]    [Pg.157]    [Pg.307]    [Pg.93]    [Pg.10]    [Pg.341]    [Pg.497]    [Pg.190]    [Pg.40]    [Pg.157]    [Pg.199]    [Pg.203]    [Pg.244]    [Pg.180]    [Pg.188]    [Pg.191]    [Pg.174]    [Pg.323]    [Pg.114]    [Pg.435]    [Pg.57]    [Pg.74]    [Pg.84]    [Pg.90]    [Pg.103]    [Pg.203]    [Pg.228]    [Pg.264]    [Pg.427]    [Pg.429]    [Pg.449]    [Pg.284]    [Pg.313]    [Pg.1298]    [Pg.1268]    [Pg.1288]    [Pg.389]   
See also in sourсe #XX -- [ Pg.2 , Pg.5 , Pg.5 , Pg.105 , Pg.121 ]




SEARCH



Controlled Crystal Growth and Microstructural Evolution

Crystal growth microstructural examination

Crystal network microstructures

Fat crystal network microstructure

Laser crystallization microstructure

Liquid crystals microstructured fluids

Photonic crystals microstructures

© 2024 chempedia.info