Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microemulsions characteristic

This chapter focuses on silica synthesis via the microemulsion-mediated alkoxide sol-gel process. The discussion begins with a brief introduction to the general principles underlying microemulsion-mediated silica synthesis. This is followed by a consideration of the main microemulsion characteristics believed to control particle formation. Included here is the influence of reactants and reaction products on the stability of the single-phase water-in-oil microemulsion region. This is an important issue since microemulsion-mediated synthesis relies on the availability of surfactant/ oil/water formulations that give stable microemulsions. Next is presented a survey of the available experimental results, with emphasis on synthesis protocols and particle characteristics. The kinetics of alkoxide hydrolysis in the microemulsion environment is then examined and its relationship to silica-particle formation mechanisms is discussed. Finally, some brief comments are offered concerning future directions of the microemulsion-based alkoxide sol-gel process for silica. [Pg.147]

An edible o/w emulsion preconcentrate formulation containing a hydrolyzed fat (melting point = 30-40°C), an aroma or flavor, and a surfactant (polyglycerol mono/diester) was disclosed by Chmiel and coworkers [40,41]. Upon heating the food product to above the melting point of the hydrolyzed fat, the emulsion preconcentrate mixes with the aqueous phase in the food and spontaneously forms an emulsion with microemulsion characteristics that rapidly release the aroma. The utility of this invention was shown for frozen dinners and frozen pizza. For chilled or frozen foods, hydrolyzed fat with a lower melting point can be used. [Pg.420]

High Water-Base Fluids. These water-base fluids have very high fire resistance because as Httle as 5% of the fluid is combustible. Water alone, however, lacks several important quaUties as a hydrauHc fluid. The viscosity is so low that it has Httle value as a sealing fluid water has Httle or no abiHty to prevent wear or reduce friction under boundary-lubrication conditions and water cannot prevent mst. These shortcomings can be alleviated in part by use of suitable additives. Several types of high water-based fluids commercially available are soluble oils, ie, od-in-water emulsions microemulsions tme water solutions, called synthetics and thickened microemulsions. These last have viscosity and performance characteristics similar to other types of hydrauHc fluids. [Pg.263]

Lattice models for bulk mixtures have mostly been designed to describe features which are characteristic of systems with low amphiphile content. In particular, models for ternary oil/water/amphiphile systems are challenged to reproduce the reduction of the interfacial tension between water and oil in the presence of amphiphiles, and the existence of a structured disordered phase (a microemulsion) which coexists with an oil-rich and a water-rich phase. We recall that a structured phase is one in which correlation functions show oscillating behavior. Ordered lamellar phases have also been studied, but they are much more influenced by lattice artefacts here than in the case of the chain models. [Pg.656]

The behavior of the internal energy, heat capacity, Euler characteristic, and its variance ( x ) x) ) the microemulsion-lamellar transition is shown in Fig. 12. Both U and (x) jump at the transition, and the heat capacity, and (x ) - (x) have a peak at the transition. The relative jump in the Euler characteristic is larger than the one in the internal energy. Also, the relative height of the peak in x ) - x) is bigger than in the heat capacity. Conclude both quantities x) and x ) - can be used to locate the phase transition in systems with internal surfaces. [Pg.717]

FIG. 12 The behavior of the internal energy U (per site), heat capacity Cy (per site), the average Euler characteristic (x) and its variance (x") — (x) close to the transition line and at the transition to the lamellar phase for/o = 0. The changes are small at the transition and the transition is very weakly first-order. The weakness of the transition is related to the proliferation of the wormhole passages, which make the lamellar phase locally very similar to the microemulsion phase (Fig. 13). Note also that the values of the energy and heat capacity are not very much different from their values (i.e., 0.5 per site) in the Gaussian approximation of the model [47]. (After Ref. 49.)... [Pg.719]

For diffuse and delocahzed interfaces one can still define a mathematical surface which in some way describes the film, for example by 0(r) = 0. A problem arises if one wants to compare the structure of microemulsion and of ordered phases within one formalism. The problem is caused by the topological fluctuations. As was shown, the Euler characteristic averaged over the surfaces, (x(0(r) = 0)), is different from the Euler characteristics of the average surface, x((0(r)) = 0), in the ordered phases. This difference is large in the lamellar phase, especially close to the transition to the microemulsion. x((0(r)) =0) is a natural quantity for the description of the structure of the ordered phases. For microemulsion, however, (0(r)) = 0 everywhere, and the only meaningful quantity is (x(0(r) = 0))-... [Pg.731]

Figure 7. Topological fluctuations of the lamellar phase at different points of the phase diagram, (a) Single fusion between the lamellae by a passage (this configuration is close to the topological disorder line), (b) Configuration close to the transition to the disordered microemulsion phase the Euler characteristic is large and negative. Figure 7. Topological fluctuations of the lamellar phase at different points of the phase diagram, (a) Single fusion between the lamellae by a passage (this configuration is close to the topological disorder line), (b) Configuration close to the transition to the disordered microemulsion phase the Euler characteristic is large and negative.
The Winsor II microemulsion is the configuration that has attracted most attention in solvent extraction from aqueous feeds, as it does not affect the structure of the aqueous phase the organic extracting phase, on the other hand, is now a W/0 microemulsion instead of a single phase. The main reason for the interest in W/0 microemulsions is that the presence of the aqueous microphase in the extracting phase may enhance the extraction of hydrophilic solutes by solubilizing them in the reverse micellar cores. However, this is not always the case and it seems to vary with the characteristics of the system and the type of solute. Furthermore, in many instances the mechanism of extraction enhancement is not simply solubilization into the reverse micellar cores. Four solubilization sites are possible in a reverse micelle, as illustrated in Fig. 15.6 [19]. An important point is that the term solubilization does not apply only to solute transfer into the reverse micelle cores, but also to insertion into the micellar boundary region called the palisade. The problem faced by researchers is that the exact location of the solute in the microemulsion phase is difficult to determine with most of the available analytical tools, and thus it has to be inferred. [Pg.661]

In the water-flooding process, mixed emulsifiers are used. Soluble oils are used in various oil-well-treating processes, such as the treatment of water injection wells to improve water injectivity and to remove water blockage in producing wells. The same method is useful in different cleaning processes with oil wells. This is known to be effective since water-in-oil microemulsions are found in these mixtures, and with high viscosity. The micellar solution is composed essentially of hydrocarbon, aqueous phase, and surfactant sufficient to impart micellar solution characteristics to the emulsion. The hydrocarbon is crude oil or gasoline. Surfactants are alkyl aryl... [Pg.132]

Microemulsions are microstructured mixtures of oil, water, emulsifiers, and other substances. Since their structures differ in many ways from that of ordinary emulsions, it will be described separately. Liquid crystals (LC) are substances that exhibit special melting characteristics. Further, some surfactant-water-cosurfactant mixtures may also exhibit LC (lyotropic crystal) properties. [Pg.174]

Microemulsion polymerization is an emulsion polymerization with very much smaller monomer droplets, about 10-100 nm compared to 1-100 pm. Micelles are present because the surfactant concentration is above CMC. The final polymer particles generally have diameters of 10-50 nm. Although many of the characteristics of microemulsion polymerization parallel those of emulsion polymerization, the details are not exactly the same [Co et al., 2001 de Vries et al., 2001 Lopez et al., 2000 Medizabial et al., 2000]. Water-soluble initiators are commonly used, but there are many reports of microemulsion polymerization with... [Pg.367]

This effect can be of great importance, because it is susceptible to considerable alteration of the surfactant interaction between oil and water, and the solubilization in microemulsion (as in the so-called lipophilic and hydrophihc linker mechanisms). The role of the linker molecules is to extend the reach of the surfactant in the bulk phase and in practice to somehow modify the oil and water phases close to the interface, so that their characteristic parameters are altered [66-69]. [Pg.101]

It can now be said that the microemulsion-mediated silicon alkoxide sol-gel process has come of age. The ability to form monodisperse spherical silica particles (20-39) and monolithic gels (40-53) by this method has been amply demonstrated. Recipes are available to prepare materials with predetermined characteristics, especially particle size and polydispersity. Potential applications of these microemulsion-derived... [Pg.184]

High-pressure FT-IR spectroscopy has been used to clarify (1) the rotational isomerism of molecules, (2) characteristics of water and the water-head group, and (3) RSO3 Na4- interactions in reverse micellar aggregates in supercritical ethane. This work demonstrates interesting pressure, temperature, and salt effects on an enzyme-catalyzed esterification and/or maintenance of a one-phase microemulsion in supercritical fluids from practical and theoretical points of view (Ikushima, 1997). [Pg.144]

There are two main characteristics of microemulsions that are interesting to the pharmaceutical formulator, assuming all other attributes are acceptable such as the toxicity of the component materials. The first is the spontaneous formation and dispersion of small (<1 pm) oil droplets in the continuum as soon as the water concentration has reached an optimum value during a mixing process. This composition is remarkably stable isothermally but does revert to other structures if the temperature is significantly changed one way or another. [Pg.201]

Microemulsions. Systems comprising microwater droplets suspended in an scCO T oil phase can be achieved with the use of appropriate surfactants, of which the best appear to be fluorinated. Microemulsions in supercritical hydrofluoro carbons are also possible. Potential may also exist for speciality coatings via low concentration solutions of fluorinated products in supercritical fluid for, e.g., thin-fitm deposition, conformal coatings, and release coatings. Supercritical CO2 will dissolve in formulated systems to improve flow and plasticize melt-processable materials to improve melt-flow characteristics and lower the glass transition temperature. [Pg.40]

The nano-sized particles of calcium carbonate and barium carbonate have specific characteristics. They are important materials for the industry. The main object of this investigation is to obtain nanoparticles of calcium carbonate and barium carbonate by chemical reaction carried out in microemulsion of water in oil. The nanoparticles obtained are spherical. Their sizes vary from 20 to 30 nm. The shape and size of particles are determinated by electron microscopy. [Pg.115]


See other pages where Microemulsions characteristic is mentioned: [Pg.666]    [Pg.666]    [Pg.147]    [Pg.669]    [Pg.710]    [Pg.715]    [Pg.716]    [Pg.717]    [Pg.731]    [Pg.735]    [Pg.739]    [Pg.236]    [Pg.165]    [Pg.152]    [Pg.154]    [Pg.54]    [Pg.561]    [Pg.660]    [Pg.667]    [Pg.180]    [Pg.156]    [Pg.83]    [Pg.194]    [Pg.207]    [Pg.227]    [Pg.127]    [Pg.198]    [Pg.203]    [Pg.186]    [Pg.54]    [Pg.174]    [Pg.147]   
See also in sourсe #XX -- [ Pg.3262 ]




SEARCH



Anionic microemulsion system characteristics

© 2024 chempedia.info