Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microbial oxidation alternatives

Anaerobic conditions often develop in hydrocarbon-contaminated subsurface sites due to rapid aerobic biodegradation rates and limited supply of oxygen. In the absence of O, oxidized forms or natural organic materials, such as humic substances, are used by microorganisms as electron acceptors. Because many sites polluted by petroleum hydrocarbons are depleted of oxygen, alternative degradation pathways under anaerobic conditions tend to develop. Cervantes et al. (2001) tested the possibility of microbially mediated mineralization of toluene by quinones and humus as terminal electron acceptors. Anaerobic microbial oxidation of toluene to CO, coupled to humus respiration, was demonstrated by use of enriched anaerobic sediments (e.g., from the Amsterdam petroleum harbor). Natural humic acids and... [Pg.358]

If H2S does not escape into the atmosphere, it may be subject to microbial oxidation under aerobic conditions. Alternatively, it may undergo phototrophic oxidation under anaerobic conditions, where sulfate as well as elemental sulfur may serve as electron acceptors while organic substrates are oxidized. [Pg.156]

Also, as precombustion sulfur removal becomes an attractive alternative to flue gas scrubbers, scientists have explored several methods of removing inorganic sulfur from coal and coal chars. Oxidation, microbial oxidation/desulfurization, and halogenation are avenues that are now, and have been, under investigation for some time (Thomas, 1995). [Pg.361]

In the olivanic acid series of carbapenems the ( )-acetamidoethenyl grouping can be isomerised to the (Z)-isomer (19) (22) and reaction with hypobromous acid provides a bromohydrin that fragments to give a thiol of type (20) when R = H, SO H, or COCH. The thiol is not isolated but can react to provide new alkyl or alkenyl C-2 substituents (28). In the case of the nonsulfated olivanic acids, inversion of the stereochemistry at the 8(3)-hydroxyl group by way of a Mitsunobu reaction affords an entry to the 8(R)-thienamycin series (29). An alternative method for introducing new sulfur substituents makes use of a displacement reaction of a carbapenem (3)-oxide with a thiol (30). Microbial deacylation of the acylamino group in PS-5 (5) has... [Pg.5]

For food and pharmaceutical applications, the microbial count must be reduced to less than 10,000 viable cells per g exopolysaccharide. Treatment with propylene oxide gas has been used for reducing the number of viable cells in xanthan powders. The patented process involves propylene oxide treatment for 3 h in a tumbling reactor. There is an initial evacuation step before propylene oxide exposure. After treatment, evacuation and tumbling are alternated and if necessary the reactor is flushed with sterile nitrogen gas to reduce the residual propylene oxide level below the Food and Drug Administration permitted maximum (300 mg kg 1). The treated polysaccharide is then packaged aseptically. [Pg.211]

Desulfurization using purified enzymes Investigations into enzymatic desulfurization as an alternative to microbial desulfurization has revealed several enzymes capable of the initial oxidation of sulfur. A study reported use of laccase with azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a mediator for oxidation of DBT [181]. The rate of this reaction was compared to hydrogen peroxide-based phosphotungstic acid-catalyzed oxidation and the latter was found to be about two orders of magnitude higher. The authors also oxidized diesel oil sulfur to no detectable levels via extraction of the oxidized sulfur compounds from diesel. In Table 9, the enzymes used in oxidation of DBT to DBTO are reported. [Pg.102]

There are several chemical compounds found in the waste waters of a wide variety of industries that must be removed because of the danger they represent to human health. Among the major classes of contaminants, several aromatic molecules, including phenols and aromatic amines, have been reported. Enzymatic treatment has been proposed by many researchers as an alternative to conventional methods. In this respect, PX has the ability to coprecipitate certain difficult-to-remove contaminants by inducing the formation of mixed polymers that behave similarly to the polymeric products of easily removable contaminants. Thus, several types of PX, including HRP C, LiP, and a number of other PXs from different sources, have been used for treatment of aqueous aromatic contaminants and decolorization of dyes. Thus, LiP was shown to mineralize a variety of recalcitrant aromatic compounds and to oxidize a number of polycyclic aromatic and phenolic compounds. Furthermore, MnP and a microbial PX from Coprinus macrorhizus have also been observed to catalyze the oxidation of several monoaromatic phenols and aromatic dyes (Hamid and Khalil-ur-Rehman 2009). [Pg.115]

Microbial biofuel cells were the earliest biofuel cell technology to be developed, as an alternative to conventional fuel cell technology. The concept and performance of several microbial biofuel cells have been summarized in recent review chapters." The most fuel-efficient way of utilizing complex fuels, such as carbohydrates, is by using microbial biofuel cells where the oxidation process involves a cascade of enzyme-catalyzed reactions. The two classical methods of operating the microbial fuel cells are (1) utilization of the electroactive metabolite produced by the fermentation of the fuel substrate " and (2) use of redox mediators to shuttle electrons from the metabolic pathway of the microorganism to the electrodes. ... [Pg.632]

Anaerobic metabolism occnrs nnder conditions in which the diffusion rate is insufficient to meet the microbial demand, and alternative electron acceptors are needed. The type of anaerobic microbial reaction controls the redox potential (Eh), the denitrification process, reduction of Mu and SO , and the transformation of selenium and arsenate. Keeney (1983) emphasized that denitrification is the most significant anaerobic reaction occurring in the subsurface. Denitrification may be defined as the process in which N-oxides serve as terminal electron acceptors for respiratory electron transport (Firestone 1982), because nitrification and NOj" reduction to produce gaseous N-oxides. hi this case, a reduced electron-donating substrate enhances the formation of more N-oxides through numerous elechocarriers. Anaerobic conditions also lead to the transformation of organic toxic compounds (e.g., DDT) in many cases, these transformations are more rapid than under aerobic conditions. [Pg.305]

There are two ways by which goethite can be formed in soils. If iron is released from solid Fe" compounds such as Fe silicates, carbonates and sulphides or, alternatively, from existing Fe" oxides by microbial reduction, the Fe will be oxidized in an... [Pg.441]

In soils, electrons are produced by the metabolic activity of soil biota. These electrons are usually accepted by O2 dissolved in the soil solution which is then replaced by O2 from the soil air. Oxygen may, however, become deficient if all pores are filled with water as in waterlogged or compacted soils. Fe in Fe oxides may then function as an alternative electron acceptor and Fe ions will be formed according to eq. (16.3). The electrons are transferred from the decomposing biomass to the Fe oxide by microbially produced enzymes. Other potential electron acceptors in soils are nitrate, Mn and sulphate. [Pg.462]


See other pages where Microbial oxidation alternatives is mentioned: [Pg.201]    [Pg.124]    [Pg.153]    [Pg.183]    [Pg.393]    [Pg.246]    [Pg.247]    [Pg.431]    [Pg.135]    [Pg.520]    [Pg.84]    [Pg.91]    [Pg.458]    [Pg.395]    [Pg.219]    [Pg.197]    [Pg.80]    [Pg.74]    [Pg.91]    [Pg.98]    [Pg.319]    [Pg.383]    [Pg.409]    [Pg.64]    [Pg.158]    [Pg.169]    [Pg.18]    [Pg.359]    [Pg.19]    [Pg.65]    [Pg.194]    [Pg.163]    [Pg.305]    [Pg.84]    [Pg.91]   
See also in sourсe #XX -- [ Pg.79 ]

See also in sourсe #XX -- [ Pg.79 ]

See also in sourсe #XX -- [ Pg.7 , Pg.79 ]

See also in sourсe #XX -- [ Pg.7 , Pg.79 ]

See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Microbial oxidation

© 2024 chempedia.info