Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael addition general reaction scheme

Cellulose Ethers. Cellulose ethers are formed when cellulose, in the presence of alkali or as alkali cellulose, is treated with alkyl or arylalkyl halides. Two types of reaction are employed in the preparation of cellulose ethers. The most common is nucleophilic substitution. Methylation of alkali cellulose with a methyl halide is an example of this type. The other type of etherification reaction is Michael addition. This reaction proceeds by way of an alkali-catalyzed addition of an activated vinyl group to the cellulose. The reaction of acrylonitrile with alkali cellulose is a typical example. The general reaction is outlined in Scheme 4. [Pg.295]

We further explored the steric effect of this Michael addition-cyclization reaction sequence. A series of secondary amines 13a-f were prepared and subjected to the Michael addition and acid-induced cyclization (Scheme 6) [12]. The results are summarized in Table 2. In general, we found that the secondary amines were less reactive in this Michael addition-cyclization reaction sequence. The p-toluene acetylenic sulfoxide la was not reactive enough and only the stronger electron-withdrawing o-nitrophenyl acetylenic sulfoxide 1 b achieved the transformation. In contrast to the primary amine approach, the secondary amine approach resulted in a reversed diastereoselectivity bias with compounds 14 as the major isolated products (except 13e). In general, a lower reaction temperature and increase in the steric hindrance of the secondary amine improved the diastereoselectivity. Exceptionally good diastereoselectivity was observed for the cyclization of 13 f (Scheme 6) (Table 2)... [Pg.109]

Using tryptamine as the nucleophile, the Michael addition-cyclization strategy was extended to the enantioselective synthesis of the /J-carboline alkaloid system. Michael addition of tryptamine to the chiral acetylenic sulfoxides took place smoothly at room temperature. Either trifluoroacetic acid or p-toluene-sulfonic acid was effective as a catalyst for the cyclization step (Scheme 7). The results of the Michael addition-cyclization reaction sequence are summarized in Table 3. In general, we found that the indole moiety is more reactive than the dimethoxyaryl ring used in the tetrahydroisoquinoline synthesis. Therefore, the cyclization step could take place at a temperature as low as -60 °C. Also, p-tolu-enesulfonic acid resulted in a better diastereoselectivity. However, the diastereo-selectivity of the system is much less sensitive to the aryl substituents of the acetylenic sulfoxides compared to that of the tetrahydroisoquinoline system. Also, to our surprise, the steric factor on the chiral acetylenic sulfoxide has little effect on the diastereoselectivity. Even with the bulky 2-methoxy-naphthyl acetylenic sulfoxide lc [11], the diastereoselectivity still remained roughly the same as for 1 a and 1 b (Scheme 7) (Table 3). [Pg.110]

Another example of a [4S+1C] cycloaddition process is found in the reaction of alkenylcarbene complexes and lithium enolates derived from alkynyl methyl ketones. In Sect. 2.6.4.9 it was described how, in general, lithium enolates react with alkenylcarbene complexes to produce [3C+2S] cycloadducts. However, when the reaction is performed using lithium enolates derived from alkynyl methyl ketones and the temperature is raised to 65 °C, a new formal [4s+lcj cy-clopentenone derivative is formed [79] (Scheme 38). The mechanism proposed for this transformation supposes the formation of the [3C+2S] cycloadducts as depicted in Scheme 32 (see Sect. 2.6.4.9). This intermediate evolves through a retro-aldol-type reaction followed by an intramolecular Michael addition of the allyllithium to the ynone moiety to give the final cyclopentenone derivatives after hydrolysis. The role of the pentacarbonyltungsten fragment seems to be crucial for the outcome of this reaction, as experiments carried out with isolated intermediates in the absence of tungsten complexes do not afford the [4S+1C] cycloadducts (Scheme 38). [Pg.87]

Lipases are the enzymes for which a number of examples of a promiscuous activity have been reported. Thus, in addition to their original activity comprising hydrolysis of lipids and, generally, catalysis of the hydrolysis or formation of carboxylic esters [107], lipases have been found to catalyze not only the carbon-nitrogen bond hydrolysis/formation (in this case, acting as proteases) but also the carbon-carbon bond-forming reactions. The first example of a lipase-catalyzed Michael addition to 2-(trifluoromethyl)propenoic acid was described as early as in 1986 [108]. Michael addition of secondary amines to acrylonitrile is up to 100-fold faster in the presence of various preparations of the hpase from Candida antariica (CAL-B) than in the absence of a biocatalyst (Scheme 5.20) [109]. [Pg.113]

The Michael addition of nitroalkanes to election-deficient alkenes provides a powerful synthetic tool in which it is perceived that the nitro group can be transformed into various functionalities. Various kinds of bases have been used for this transformation in homogeneous solutions, or, alternatively, some heterogeneous catalysts have been employed. In general, bases used in the Henry reaction are also effective for these additions (Scheme 4.18).133... [Pg.103]

Main group organometallic polymerization catalysts, particularly of groups 1 and 2, generally operate via anionic mechanisms, but the similarities with truly coordinative initiators justify their inclusion here. Both anionic and coordinative polymerization mechanisms are believed to involve enolate active sites, (Scheme 6), with the propagation step akin to a 1,4-Michael addition reaction. [Pg.23]

In general, copper-zinc compounds, unlike organolithium-derived organocopper reagents, undergo clean addition reactions to nitroolefins. After Michael addition, the resulting zinc nitronates can be oxidatively converted into polyfunctional ketones, such as 117 (Scheme 2.45) [96]. [Pg.66]

The two reaction modes of the Michael adducts 145 demonstrate two general principles for the possible preparation of ordinary size heterocyclic compounds from the chlorocyclopropylideneacetates 1,2. Thus, either the heterocycles 153 can be formed by Michael addition of a bidentate nucleophile 150 onto the chloro ester 1-Me and subsequent ring closure of the intermediate 151 [26] by nucleophilic substitution of the chlorine atom at the newly formed sp carbon center adjacent to both the carbonyl and the cyclopropyl group (Route B in Scheme 48). Alternatively, the intermediate 151 can cyclize by nucleophilic attack on the ester moiety to give heterocycles of type 152 (Route A in Scheme 48) [26]. [Pg.192]

The formal addition of a C-H bond at activated methylenes and methynes (pronucleophiles) to activated alkenes in the presence of a base is well known as the Michael reaction (Scheme 1, Type A) [1]. In modem organic syntheses, the use of transition metal (TM) catalysts enables the C-H addition of activated methylenes and methynes to activated alkenes perfectly under neutral conditions (Scheme 1, Type B) [2]. In general, the nonfunctionalized carbon-carbon multiple bonds (for example, EWG2 = H in Scheme 1) are unreactive toward carbon nucleophiles because of their electron rich Jt-orbitals. The pioneering efforts by various research groups resulted in the development of transition metal-catalyzed addition of a C-H bond at active alkanes to such unactivated C-C multiple bonds. This reaction consists of the formal addition of a C-H bond across the C-C multiple bonds and is called a hydrocarbonation reaction. As a milestone in this hydro-carbonation area, early in the 1970s, Takahashi et al. reported the Pd-catalyzed addition of the C-H bond of pronucleophiles to 1,3-dienes [3], The first Pd-catalyzed reaction of activated methylenes with unsubstituted allenes was apparently reported by Coulson [4]. The synthetic applications of this reaction were very limited. In the last decade, the Pd-catalyzed addition of C-H bonds to various unacti-... [Pg.328]

Molecular iodine-promoted Michael addition is a simple and efficient method for generating 2-pyrrolyl-2-phenyl-l-nitroalkanes in good yields (Scheme 67) [86]. Cr+3-Catsan (Cr+3 exchanged commercially available montmorillonite clay) and ZnCl2, which were first used as Lewis acids for Michael reactions of pyrrole, showed different selectivity under the same conditions [221], In general, while the reactions catalyzed by Cr+3-Catsan... [Pg.43]

Of the reagents listed in Table 8.1, dialkyllithiocuprates stand out because of their unique ability to participate in 1,4-addition reactions. Such reactions, also known as conjugate additions, are generally referred to as Michael additions. This name reaction is illustrated in Scheme 8.16 with the reaction of dimethyllithiocuprate with methyl vinyl ketone. [Pg.143]


See other pages where Michael addition general reaction scheme is mentioned: [Pg.500]    [Pg.579]    [Pg.855]    [Pg.46]    [Pg.70]    [Pg.247]    [Pg.22]    [Pg.133]    [Pg.329]    [Pg.398]    [Pg.70]    [Pg.247]    [Pg.392]    [Pg.16]    [Pg.959]    [Pg.205]    [Pg.329]    [Pg.126]    [Pg.173]    [Pg.2]    [Pg.46]    [Pg.57]    [Pg.222]    [Pg.230]    [Pg.65]    [Pg.9]    [Pg.13]    [Pg.15]    [Pg.43]    [Pg.64]    [Pg.535]    [Pg.290]    [Pg.178]    [Pg.3]    [Pg.398]    [Pg.471]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Additivity scheme

General reactions

General scheme

Generalized reaction

Reaction general schemes

Reaction scheme

Reactions Michael addition

© 2024 chempedia.info