Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelles compounds

The most important consequence of micelle formation in the process of emulsion polymerisation is the solubilisation of organic compounds in aqueous media. Since the association of lipophilic groups inside a micelle leads to a formation of centres of attraction for organic compounds, it is possible to dissolve appreciably higher proportions of sparingly water-soluble monomers in micellar solutions than in water alone. Monomers, which are essentially non-polar in character, may be expected to dissolve only inside the hydrocarbon portion of the micelle. Compounds with polar groups can at least partially be accommodated in the water phase or at the micelle surface so that the requirements for the micelle dimensions are less critical. [Pg.221]

Other solubilization and partitioning phenomena are important, both within the context of microemulsions and in the absence of added immiscible solvent. In regular micellar solutions, micelles promote the solubility of many compounds otherwise insoluble in water. The amount of chemical component solubilized in a micellar solution will, typically, be much smaller than can be accommodated in microemulsion fonnation, such as when only a few molecules per micelle are solubilized. Such limited solubilization is nevertheless quite useful. The incoriDoration of minor quantities of pyrene and related optical probes into micelles are a key to the use of fluorescence depolarization in quantifying micellar aggregation numbers and micellar microviscosities [48]. Micellar solubilization makes it possible to measure acid-base or electrochemical properties of compounds otherwise insoluble in aqueous solution. Micellar solubilization facilitates micellar catalysis (see section C2.3.10) and emulsion polymerization (see section C2.3.12). On the other hand, there are untoward effects of micellar solubilization in practical applications of surfactants. Wlren one has a multiphase... [Pg.2592]

One of the most important characteristics of micelles is their ability to take up all kinds of substances. Binding of these compounds to micelles is generally driven by hydrophobic and electrostatic interactions. The dynamics of solubilisation into micelles are similar to those observed for entrance and exit of individual surfactant molecules. Their uptake into micelles is close to diffusion controlled, whereas the residence time depends on the sttucture of the molecule and the solubilisate, and is usually in the order of 10 to 10" seconds . Hence, these processes are fast on the NMR time scale. [Pg.127]

The binding behaviour of benzene can be extrapolated to many other aromatic compounds such as naphthalene and benzene derivativesInterestingly, a large number of probe molecules contain aromatic rings and many of them will prefer the outer regions of micelles, whereas in bilayer systems, the same molecules prefer the interior of the aggregate ". Qearly these probes cannot be used to determine polarity of the micellar interior or the extent of water penetration therein . [Pg.129]

This chapter describes the effects of micelles on the Diels-Alder reaction of compounds 5,1 a-g (see Scheme 5.1) with cyclopentadiene (5.2). As far as we know, our study is the first detailed kinetic analysis of micellar catalysis of a Diels-Alder reaction. [Pg.132]

Fonnation of a complex with a copper cation only further stimulates this behaviour. As a result, S.lg is almost completely bound to the micelles, even at low concentrations of Cu(DS)2. By contrast, the reaction of 5.1 f still benefits from an increasing surfactant concentration at 10 mM of Cu(DS)2. In fact, it is surprising that the reaction of this anionic compound is catalysed at all by an anionic surfactant. Probably it is the copper complex of 5.If, being overall cationic, that binds to the micelle. Not surprisingly, the neutral substrate S.lc shows intermediate behaviour. [Pg.143]

These results can be extended to other Diels-Alder reactions. In view of the stmctures of most dienes and dienophiles a spatial separation of these compounds upon binding to micelles can be expected for the majority of Diels-Alder reactions. This arrangement most likely explains the unexpectedly small influence of micelles on the rates of Diels-Alder reactions as reported in the literature. [Pg.178]

Methyl group (Section 2 7) The group —CH3 Mevalonic acid (Section 26 10) An intermediate in the biosyn thesis of steroids from acetyl coenzyme A Micelle (Section 19 5) A sphencal aggregate of species such as carboxylate salts of fatty acids that contain a lipophilic end and a hydrophilic end Micelles containing 50-100 car boxylate salts of fatty acids are soaps Michael addition (Sections 18 13 and 21 9) The conjugate ad dition of a carbanion (usually an enolate) to an a 3 unsatu rated carbonyl compound... [Pg.1288]

Surfactants are long-chain compounds containing a hydrophobic tail and an ionic head. In polar solvents the surfactants arrange themselves in a spherical structure known as a micelle in which the hydrophobic tails form the... [Pg.447]

The elution order for neutral species in MEKC depends on the extent to which they partition into the micelles. Hydrophilic neutrals are insoluble in the micelle s hydrophobic inner environment and elute as a single band as they would in CZE. Neutral solutes that are extremely hydrophobic are completely soluble in the micelle, eluting with the micelles as a single band. Those neutral species that exist in a partition equilibrium between the buffer solution and the micelles elute between the completely hydrophilic and completely hydrophobic neutrals. Those neutral species favoring the buffer solution elute before those favoring the micelles. Micellar electrokinetic chromatography has been used to separate a wide variety of samples, including mixtures of pharmaceutical compounds, vitamins, and explosives. [Pg.606]

Silicates in Solutions. The distribution of sdicate species in aqueous sodium sdicate solutions has long been of interest because of the wide variations in properties that these solutions exhibit with different moduli (23—25). Early work led to a dual-nature description of sdicates as solutions composed of hydroxide ions, sodium ions, coUoidal sdicic acid, and so-called crystaHoidal sdica (26). CrystaHoidal sdica was assumed to be analogous to the simple species then thought to be the components of crystalline sdicate compounds. These include charged aggregates of unit sdicate stmctures and sdica (ionic micelles), and weU-defined sdicate anions. [Pg.5]

Asphalt emulsions are dispersioas of asphalt ia water that are stabilized iato micelles with either an anionic or cationic surfactant. To manufacture an emulsion, hot asphalt is mixed with water and surfactant ia a coUoid mill that produces very small particles of asphalt oa the order of 3 p.m. These small particles of asphalt are preveated from agglomerating iato larger particles by a coatiag of water that is held ia place by the surfactant. If the asphalt particles agglomerate, they could settle out of the emulsion. The decision on whether a cationic or anionic surfactant is used depends on the appHcation. Cationic stabilized emulsions are broken, ie, have the asphalt settle out, by contact with metal or siHcate materials as weU as by evaporation of the water. Siace most rocks are siHcate-based materials, cationic emulsions are commonly used for subbase stabilization and other similar appHcations. In contrast, anionic emulsions only set or break by water evaporation thus an anionic emulsion would be used to make a cold patch compound. [Pg.320]

Salt formation. The resin acids have a low acid strength. The pa s (ionization constants) values of resin acids are difficult to obtain, and values of 6.4 and 5.7 have been reported [23] for abietic and dehydroabietic acids, respectively. Resin acids form salts with sodium and aluminium. These salts can be used in detergents because of micelle formation at low concentrations. Other metal salts (resinates) of magnesium, barium, calcium, lead, zinc and cobalt are used in inks and adhesive formulations. These resinates are prepared by precipitation (addition of the heavy metal salt to a solution of sodium resinate) or fusion (rosin is fused with the heavy metal compound). [Pg.602]

Ultrafiltration of micellar solutions combines the high permeate flows commonly found in ultrafiltration systems with the possibility of removing molecules independent of their size, since micelles can specifically solubilize or bind low molecular weight components. Characteristics of this separation technique, known as micellar-enhanced ultrafiltration (MEUF), are that micelles bind specific compounds and subsequent ultrafiltration separates the surrounding aqueous phase from the micelles [70]. The pore size of the UF membrane must be chosen such, that the micelles are retained but the unbound components can pass the membrane freely. Alternatively, proteins such as BSA have been used in stead of micelles to obtain similar enan-tioselective aggregates [71]. [Pg.145]

In the aqueous biphasic hydroformylation reaction, the site of the reaction has been much discussed (and contested) and is dependent on reaction conditions (temperature, partial pressure of gas, stirring, use of additives) and reaction partners (type of alkene) [35, 36]. It has been suggested that the positive effects of cosolvents indicate that the bulk of the aqueous liquid phase is the reaction site. By contrast, the addition of surfactants or other surface- or micelle-active compounds accelerates the reaction, which apparently indicates that the reaction occurs at the interfacial layer. [Pg.270]

For an a-helical fraction fH = 0,5 30% methanol, 20% ethanol, 15% i-propanol or 10% trifluoroethanol are necessary. Trifluoroethanol like perfluorinated alcohols, e.g. hexafluoroisopropanol is characterised on the hand by a strong acidic proton at the OG-group due to the —1-effect of the fluor atoms. On the other hand fluorocarbons are more hydrophobic than the hydrocarbons which is mainly due to the larger surface of the F compared with H. For this reason the critical micelle concentration of perfluorinated detergents is much lower than that of the corresponding hydrocarbon compounds. It was found that C4F7-derivatives act as detergents... [Pg.20]

The problem of molecular recognition has attracted biologically oriented chemists since Emil Fischer s lock-and-key theory l0). Within the last two decades, many model compounds have been developed micelle-forming detergents11, modified cyclodextrins 12), many kinds of crown-type compounds13) including podands, coronands, cryptands, and spherands. Very extensive studies using these compounds have, however, not been made from a point of view of whether or not shape similarity affects the discrimination. [Pg.92]

Influence of branching. The branched chain compounds are also able to form micelles, but compared to the straight-chain substances the cmc is always higher. Micelle formation is apparently complicated by the branching. Importance of the aromatic ring. Because of the higher local requirements, the benzene ring in LAS resp. TPBS causes an increase in surface activity and a reduction of cmc. [Pg.88]


See other pages where Micelles compounds is mentioned: [Pg.145]    [Pg.235]    [Pg.100]    [Pg.209]    [Pg.145]    [Pg.235]    [Pg.100]    [Pg.209]    [Pg.128]    [Pg.132]    [Pg.134]    [Pg.139]    [Pg.145]    [Pg.145]    [Pg.146]    [Pg.146]    [Pg.148]    [Pg.152]    [Pg.153]    [Pg.355]    [Pg.147]    [Pg.197]    [Pg.197]    [Pg.224]    [Pg.229]    [Pg.237]    [Pg.603]    [Pg.39]    [Pg.190]    [Pg.770]    [Pg.770]    [Pg.771]    [Pg.382]    [Pg.146]    [Pg.596]    [Pg.24]    [Pg.176]   
See also in sourсe #XX -- [ Pg.566 ]




SEARCH



Large compound micelles

Micelles interactions with biological compounds

© 2024 chempedia.info