Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cationic surfactants micelles

FT-EPR spectra of the ZnTPPS/DQ system in a solution of cetyltriinethylaininonium chloride (CTAC), a cationic surfactant, are shown in figme BE 16.21. As in the TX100 solution, both donor and acceptor are associated with the micelles in the CTAC solution. The spectra of DQ at delays after the laser flash of less than 5 ps clearly show polarization from the SCRP mechanism. While SCRPs were too short-lived to be observed in TXlOO solution, they clearly have a long lifetime in this case. Van Willigen and co-workers... [Pg.1614]

Asphalt emulsions are dispersioas of asphalt ia water that are stabilized iato micelles with either an anionic or cationic surfactant. To manufacture an emulsion, hot asphalt is mixed with water and surfactant ia a coUoid mill that produces very small particles of asphalt oa the order of 3 p.m. These small particles of asphalt are preveated from agglomerating iato larger particles by a coatiag of water that is held ia place by the surfactant. If the asphalt particles agglomerate, they could settle out of the emulsion. The decision on whether a cationic or anionic surfactant is used depends on the appHcation. Cationic stabilized emulsions are broken, ie, have the asphalt settle out, by contact with metal or siHcate materials as weU as by evaporation of the water. Siace most rocks are siHcate-based materials, cationic emulsions are commonly used for subbase stabilization and other similar appHcations. In contrast, anionic emulsions only set or break by water evaporation thus an anionic emulsion would be used to make a cold patch compound. [Pg.320]

Surfactants employed for w/o-ME formation, listed in Table 1, are more lipophilic than those employed in aqueous systems, e.g., for micelles or oil-in-water emulsions, having a hydrophilic-lipophilic balance (HLB) value of around 8-11 [4-40]. The most commonly employed surfactant for w/o-ME formation is Aerosol-OT, or AOT [sodium bis(2-ethylhexyl) sulfosuccinate], containing an anionic sulfonate headgroup and two hydrocarbon tails. Common cationic surfactants, such as cetyl trimethyl ammonium bromide (CTAB) and trioctylmethyl ammonium bromide (TOMAC), have also fulfilled this purpose however, cosurfactants (e.g., fatty alcohols, such as 1-butanol or 1-octanol) must be added for a monophasic w/o-ME (Winsor IV) system to occur. Nonionic and mixed ionic-nonionic surfactant systems have received a great deal of attention recently because they are more biocompatible and they promote less inactivation of biomolecules compared to ionic surfactants. Surfactants with two or more hydrophobic tail groups of different lengths frequently form w/o-MEs more readily than one-tailed surfactants without the requirement of cosurfactant, perhaps because of their wedge-shaped molecular structure [17,41]. [Pg.472]

Hydroaminomethylation of alkenes occurred to give both n- and /. so aliphatic amines catalyzed by [Rh(cod)Cl]2 and [Ir(cod)Cl]2 with TPPTS in aqueous NH3 with CO/H2 in an autoclave. The ratio of n-and /.soprimary amines ranged from 96 4 to 84 16.178 The catalytic hydroaminomethylation of long-chain alkenes with dimethylamine can be catalyzed by a water-soluble rhodium-phosphine complex, RhCl(CO) (Tppts)2 [TPPTS P(m-C6H4S03Na)3], in an aqueous-organic two-phase system in the presence of the cationic surfactant cetyltrimethy-lammonium bromide (CTAB) (Eq. 3.43). The addition of the cationic surfactant CTAB accelerated the reaction due to the micelle effect.179... [Pg.77]

Subsequently, cationic rhodium catalysts are also found to be effective for the regio- and stereoselective hydrosilation of alkynes in aqueous media. Recently, Oshima et al. reported a rhodium-catalyzed hydrosilylation of alkynes in an aqueous micellar system. A combination of [RhCl(nbd)]2 and bis-(diphenylphosphi no)propanc (dppp) were shown to be effective for the ( >selective hydrosilation in the presence of sodium dodecylsulfate (SDS), an anionic surfactant, in water.86 An anionic surfactant is essential for this ( )-selective hydrosilation, possibly because anionic micelles are helpful for the formation of a cationic rhodium species via dissociation of the Rh-Cl bond. For example, Triton X-100, a neutral surfactant, gave nonstereoselective hydrosilation whereas methyltrioctylammonium chloride, a cationic surfactant, resulted in none of the hydrosilation products. It was also found that the selectivity can be switched from E to Z in the presence of sodium iodide (Eq. 4.47). [Pg.122]

Surfactants, not surprisingly, exert a highly significant influence on the fluorescence of FBAs in solution. This effect is associated with the critical micelle concentration of the surfactant and may be regarded as a special type of solvent effect. Anionic surfactants have almost no influence on the performance of anionic FBAs on cotton, but nonionic surfactants may exert either positive or negative effects on the whiteness of the treated substrate [33]. Cationic surfactants would be expected to have a negative influence, but this is not always so [34]. No general rule can be formulated and each case has to be considered separately. [Pg.306]

Other cationic surfactants such as TTAB, DTAB, DODAB, STAC, CEDAB, and DDDAB have been used in CL reactions with less frequency. Thus, tetradecyltrimethylammonium bromide [TTAB] has been used to increase the sensitivity of the method to determine Fe(II) and total Fe based on the catalytic action of Fe(II) in the oxidation of luminol with hydrogen peroxide in an alkaline medium [47], While other surfactants such as HTAB, hexadecylpiridinium bromide (HPB), Brij-35, and SDS do not enhance the CL intensity, TTAB shows a maximum enhancement at a concentration of 2.7 X 10 2 M (Fig. 11). At the same time it was found that the catalytic effect of Fe(II) is extremely efficient in the presence of citric acid. With regard to the mechanism of the reaction, it is thought that Fe(II) forms an anionic complex with citric acid, being later concentrated on the surface of the TTAB cationic micelle. The complex reacts with the hydrogen peroxide to form hydroxy radical or superoxide ion on the... [Pg.302]

One of the nonionic surfactants most used as an enhancer of chemiluminescent reactions is Brij-35. This surfactant increases the reaction of lucigenin with catecholamines by a factor of 2.6 compared with the CL intensity in an aqueous medium [42], This enhancement can be explained in the following way it is known that oxygen from the polyoxyethylene chains in Brij-35 can react with sodium ion to form an oxonium ion, by which means the polyoxyethylene chains act as an oxonium cation. In this way the increase in CL intensity due to Brij-35 can be attributed to the same effect described for the micelles of a cationic surfactant. [Pg.305]

Rate constants of bimolecular, micelle-assisted, reactions typically go through maxima with increasing concentration of inert surfactant (Section 3). But a second rate maximum is observed in very dilute cationic surfactant for aromatic nucleophilic substitution on hydrophobic substrates. This maximum seems to be related to interactions between planar aromatic molecules and monomeric surfactant or submicellar aggregates. These second maxima are not observed with nonplanar substrates, even such hydrophobic compounds as p-nitrophenyl diphenyl phosphate (Bacaloglu, R. 1986, unpublished results). [Pg.310]

In abroad sense, the model developed for the cobaloxime(II)-catalyzed reactions seems to be valid also for the autoxidation of the alkyl mercaptan to disulfides in the presence of cobalt(II) phthalocyanine tetra-sodium sulfonate in reverse micelles (142). It was assumed that the rate-determining electron transfer within the catalyst-substrate-dioxygen complex leads to the formation of the final products via the RS and O - radicals. The yield of the disulfide product was higher in water-oil microemulsions prepared from a cationic surfactant than in the presence of an anionic surfactant. This difference is probably due to the stabilization of the monomeric form of the catalyst in the former environment. [Pg.444]

Surfactants that form micelles have also been shown to accelerate the formation of nitrosamlnes from amines and nitrite (33.) A rate enhancement of up to 80 0-fold was observed for the nitrosation of dihexylamine by nitrite in the presence of the cationic surfactant decyltrimethylammonium bromide (DTAB) at pH 3.5. A critical micelle concentration (CMC) of 0.08% of DTAB was required to cause this effect, which was attributed to a micelle with the hydrocarbon chains buried in the interior of the micelle. The positively-charged ends of the micelle would then cause an aggregation of free nitrosatable amine relative to protonated amine and thus lead to rate enhancements. Since surfactants are commonly used in water-based fluids (25-50% lubricating agent or 10-2 0% emulsifier in concentrates), concentrations above the CMC of a micelle-forming surfactant could enhance the formation of nitrosamines. [Pg.163]

The main difficulties in CE analysis of cationic surfactants arise from their strong adsorption to the capillary wall and their ability to form micelles at low concentrations. The addition of organic modifiers in high amounts or separation in absolutely non-aqueous media disrupt micelle formation within the sample and also effectiveness of the organic modifier to disrupt micelles of alkylbenzyl dimethyl ammonium... [Pg.112]

One of the main problems to be solved in the analysis of cationic surfactants is the strong adsorption of the surfactant to glassware, tubing and apparatus. To avoid losses, the solvent system used should contain a substantial percentage of organic solvent. Additionally, mobile phases containing more than 20-25% methanol will help to inhibit micelle formation [46]. [Pg.125]

Ejfect of pH It is obvious that in order to recover the protein from reverse micelles, the pH of the stripping solution needs to change toward the pi, which will result in a reduction of the protein interaction with the oppositely charged head groups. The extent of protein recovery from reverse micelles increases with increasing pH for anionic surfactants however, for cationic surfactants the opposite is true. [Pg.665]

In the separation tests with the use of a UF membrane, the rejection efficiency for the Cjg cationic surfactants was found to be in the range 90-99%, whereas for the C12 surfactants it ranged from 72 to 86%, when the feed concentration of each surfactant was greater than its corresponding CMC value. Therefore, UF rejection efficiency seems to be dependent on the respective hydrated micelle diameter and CMC value. In conclusion, the study showed that for cationic surfactants removal, if the feed concentration of a surfactant is higher than its CMC value, then the UF membrane process is found to be the best. However, if the feed concentration of a surfactant is less than its CMC value, then ion exchange is the best process for its removal. [Pg.357]

Since N will be larger than S+, all anionic surfactants are negatively charged. Similarly, cationic micelles will be positively charged. For instance, the cationic surfactant cetyltrimethyl ammonium bromide (CTAB), we have following equilibrium in micellar solutions ... [Pg.49]

This is also true in the case of cationic surfactants. Thus, in the case of CTAB solutions, there are CTA+ and Br ions below CMC, and above CMC, there are, additionally, CTAB micelles. In these systems, the counterion is Br. ... [Pg.50]

MEKC is also performed using cationic, nonionic, and zwitterionic surfactants. Widely employed are cationic surfactant consisting of a long chain tetralkylammonium salt, such as cetyltrimeth-ylammonium bromide, which causes the reversal of the direction of the EOE, due to the adsorption of the organic cation on the capillary wall. Other interesting options include the use of mixed micelles resulting from the simultaneous incorporation into the BGE of ionic and nonionic or ionic and zwitterionic surfactants. Chiral surfactants, either natural as bile salts [207] or synthetic [208] are employed for enantiomer separations. [Pg.191]


See other pages where Cationic surfactants micelles is mentioned: [Pg.303]    [Pg.303]    [Pg.204]    [Pg.2601]    [Pg.237]    [Pg.380]    [Pg.146]    [Pg.70]    [Pg.689]    [Pg.691]    [Pg.294]    [Pg.245]    [Pg.416]    [Pg.269]    [Pg.184]    [Pg.229]    [Pg.279]    [Pg.425]    [Pg.134]    [Pg.451]    [Pg.437]    [Pg.328]    [Pg.854]    [Pg.9]    [Pg.289]    [Pg.226]    [Pg.60]    [Pg.357]    [Pg.21]   
See also in sourсe #XX -- [ Pg.324 ]

See also in sourсe #XX -- [ Pg.324 ]




SEARCH



Cationic micellization

Critical micelle concentration cationic surfactant binding

Micelle cationic

Micellization surfactants

Rod-like micelles cationic surfactants

© 2024 chempedia.info