Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl methacrylate polyester resin

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

Poly(methyl methacrylate) and poly(vinyl acetate) precipitate from the resin solution as it cures. This mechanism offsets the contraction in volume as the polyester resin cross-links, resulting in a nonshrinking thermoset. Other polymer additives such as poly(butylene adipate) provide similar shrinkage... [Pg.322]

Because of its low price, compatibility, low viscosity and ease of use styrene is the preferred reactive diluent in general purpose resins. Methyl methacrylate is sometimes used, but as it does not copolymerise alone with most unsaturated polyesters, usually in conjunction with styrene in resins for translucent sheeting. Vinyl toluene and diallyl phthalate are also occasionally employed. The use of many other monomers is described in the literature. [Pg.699]

Over the years many blends of polyurethanes with other polymers have been prepared. One recent example is the blending of polyurethane intermediates with methyl methacrylate monomer and some unsaturated polyester resin. With a suitable balance of catalysts and initiators, addition and rearrangement reactions occur simultaneously but independently to give interpenetrating polymer networks. The use of the acrylic monomer lowers cost and viscosity whilst blends with 20% (MMA + polyester) have a superior impact strength. [Pg.808]

Methyl methacrylate, accounting for 4% of methanol consumption, is produced by the cyanohydrin process utilizing methanol. Methyl methacrylate is used to produce acrylic sheet, surface coating resin, and molding and extrusion powder. Also, there exist minor miscellaneous uses such as modification of acrylic fiber and polyester resin. [Pg.31]

Incorporation of modified clays into thermosetting resins, and particularly in epoxy35 or unsaturated polyester resins, in order to improve thermal stability or flame retardancy, has been reported.36 A thermogravimetric study of polyester-clay nanocomposites has shown that addition of nanoclays lowers the decomposition temperature and thermal stability of a standard resin up to 600°C. But, above this temperature, the trend is reversed in a region where a charring residue is formed. Char formation seems not as important as compared with other polymer-clay nanocomposite structures. Nazare et al.37 have studied the combination of APP and ammonium-modified MMT (Cloisite 10A, 15A, 25A, and 30B). The diluent used for polyester resin was methyl methacrylate (MMA). The... [Pg.306]

The broadest classification for plastics is the old thermoplastic and thermosetting . Examples of the former group are polyethylene, polystyrene, and poly-(methyl methacrylate) examples of the latter are urea-formaldehyde condensation polymers, powder coatings based on polyesters, epoxy resins, and vulcanized synthetic elastomers. [Pg.239]

In general, plastics are superior to elastomers in radiation resistance but are inferior to metals and ceramics. The materials that will respond satisfactorily in the range of 1010 and 1011 erg per gram are glass and asbestos-filled phenolics, certain epoxies, polyurethane, polystyrene, mineral-filled polyesters, silicone, and furane. The next group of plastics in order of radiation resistance includes polyethylene, melamine, urea formaldehyde, unfilled phenolic, and silicone resins. Those materials that have poor radiation resistance include methyl methacrylate, unfilled polyesters, cellulosics, polyamides, and fluorocarbons. [Pg.31]

To overcome the difficulties of ESI-MS, Simonsick and Prokai added sodium cations to the mobile phase to facilitate ionization [165,166]. To simplify the resulting ESI spectra, the number of components entering the ion source was reduced. Combining SEC with electrospray detection, the elution curves of polyethylene oxides) were calibrated. The chemical composition distribution of acrylic macromonomers was profiled across the molar mass distribution. The analysis of poly(ethylene oxides) by SEC-ESI-MS with respect to chemical composition and oligomer distribution was discussed by Simonsick [167]. In a similar approach aliphatic polyesters [168], phenolic resins [169], methyl methacrylate macromonomers [169] and polysulfides have been analyzed [170]. The detectable mass range for different species, however, was well below 5000 g/mol, indicating that the technique is not really suited for polymer analysis. [Pg.49]

The efficiencies of benzoin derivatives in promoting the light induced hardening of styrene-containing unsaturated polyester resins have been found to vary considerably (7), benzoin alkyl ethers and a-alkylated benzoins being more reactive than benzoin itself. However, as photoinitiators for the polymerization of bulk methyl methacrylate, benzoin and benzoin methyl ether exhibit comparable efficiencies (20), and this is also indicated for polymerisation of methyl acrylate in tert-butanol (21). The relative photoinitiating efficiencies of benzoin derivatives may be influenced by several factors, some of which will depend on the nature of the monomer system and the environment in which the polymerizations are carried out. [Pg.58]

Although there are notable exceptions as given below, the most common lipase-catalyst used for polyester synthesis is Candida antarctica lipase B (CALB) (please refer to Chapter 14 for more information on the structure and reaction mechanisms of CALB). The immobilized CALB catalyst that has been primarily used is Novozym 435, manufactured by Novozymes (Bagsvaerd, Denmark). Novozym 435 consists of CALB physically adsorbed within the macroporous resin Lewatit VPOC 1600 (poly[methyl methacrylate-co-butyl methacrylate], supplied by Bayer) (please refer to Chapter 3 for more information on Novozym 435). [Pg.85]

Polymer concretes based on phenol-formaldehyde, acetone-formaldehyde resins and monomers, and methyl methacrylate are much less common. Phenolic resins are similar to furan in many physical and mechanical properties. However, they are unstable in alkalis like polyester resins [7],... [Pg.7]


See other pages where Methyl methacrylate polyester resin is mentioned: [Pg.197]    [Pg.322]    [Pg.18]    [Pg.422]    [Pg.396]    [Pg.106]    [Pg.676]    [Pg.528]    [Pg.143]    [Pg.175]    [Pg.322]    [Pg.396]    [Pg.333]    [Pg.240]    [Pg.395]    [Pg.643]    [Pg.550]    [Pg.307]    [Pg.99]    [Pg.197]    [Pg.213]    [Pg.371]    [Pg.15]    [Pg.363]    [Pg.365]    [Pg.423]    [Pg.65]    [Pg.197]    [Pg.5]   
See also in sourсe #XX -- [ Pg.306 ]




SEARCH



Methacrylic resins

Methyl methacrylate

Methyl polyesters

Polyester methacrylates

Polyester resins

Polyester resins resin

© 2024 chempedia.info