Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl emission

For my part, although I may be somewhat of a visionary, I see a solution to the problem by chemical recycling of excess carbon dioxide emissions into methyl alcohol and derived hydrocarbon products. [Pg.217]

There are three types of TAP emissions continuous, intermittent, and accidental. Both routine emissions associated with a batch process or a continuous process that is operated only occasionally can be intermittent sources. A dramatic example of an accidental emission was the release of methyl isocyanate [624-83-9] in Bhopal, India. As a result of this accident, the U.S. Congress created Tide III, a free-standing statute included in the Superfund Amendments and Reauthorization Act (SARA) of 1986. Title III provides a mechanism by which the pubHc can be informed of the existence, quantities, and releases of toxic substances, and requires the states to develop plans to respond to accidental releases of these substances. Eurther, it requires anyone releasing specific toxic chemicals above a certain threshold amount to aimuaHy submit a toxic chemical release form to EPA. At present, there are 308 specific chemicals subject to Title III regulation (37). [Pg.374]

Sources. Methyl ethyl ketone (MEK) is used in some r neries as a solvent in lube oil dewaxing. Its extremely volatile characteristic makes fugitive emissions its primary source of releases to the environment. [Pg.109]

In any form of analysis it is important to determine the integrity of the system and confirm that artefacts are not produced as a by-product of the analytical procedure. This is particularly important in enantiomeric analysis, where problems such as the degradation of lactone and furanon species in transfer lines has been reported (40). As chromatography unions, injectors, splitters, etc. become more stable and greater degrees of deactivation are possible, problems of this kind will hopefully be reduced. Some species, however, such as methyl butenol generated from natural emissions, still remain a problem, undergoing dehydration to yield isoprene on some GC columns. [Pg.65]

Higher-value chemical and oxygenate feedstocks in the C,/Cj fraction. Isobutylene and isoamylene are used for the production of methyl tertiary butyl ether (MTBE) and tertiary amyl methyl ether (TAME). MTBE and TAME can be blended into the gasoline to reduce auto emissions. [Pg.134]

Formation of the excited amide anion of coelenteramide as the light emitter in the luminescence reaction of coelenterazine was experimentally supported by the experiment of Hori et al. (1973a), in which 2-methyl analogue of coelenterazine was used as the model compound. The summary of their work is as follows In the presence of oxygen, la and lb in DMF emitted bright blue luminescence (Amax 480 and 470 nm, respectively), and produced the reaction products Ha and lib, respectively. The fluorescence emission of lib (Amax 470 nm) and that of the spent chemiluminescence reaction of lb, both in DMF plus a base (potassium r-butoxide), were identical to the chemiluminescence emission of lb in DMF. The fluorescence emission of Ha... [Pg.169]

An additional benefit of COMT inhibitors can be found in positron emission tomography (PET) studies. In PET, using 6-[18F]-fluoro-L-dopa (6-FD) to visualize the brain dopamine metabolism, the peripheral formation of 3-0-methyl-6-[18F]-fluoro-L-dopa (3-OMFD) by COMT is harmful. 3-OMFD contaminates the brain radioactivity analysed since it is easily transported like 3-OMD to the... [Pg.338]

The methoxy group of methyl acetate formed during the thermal decomposition of acetyl peroxide appears as an emission, whereas methyl chloride shows enhanced absorption. Consider the reaction sequence in equation (40). [Pg.75]

Diazenyl radicals have also been detected in related systems. The rapid rearrangement of 1,3,5-triarylpentazadienes [equation (47)] involves intermediate triazenyl-diazenyl radical pairs, as indicated by the appearance in emission of the n.m.r. transitions of the -methyl protons of the starting material when Ar = Ar =j -CHg.C6H4 (Hol-laender and Neumann, 1970). The weak emission of benzene which accompanies a much more intense emission due to toluene when the 1,3-diaryltetrazene 6 decomposes in acetone at 50° has been interpreted... [Pg.96]

A singlet precursor has, however, been proposed for 4,4,4-triohloro-2-methyl-1-butene (17) produced in the photolysis of isomesityl oxide (18) in carbon tetrachloride solution on the basis of its all-emission spectrum (DoMinh, 1971). There remains some ambiguity, however, about the detailed route by which 17 is formed. Moreover there is other evidence suggesting that ketone photolysis in carbon tetrachloride is different CI3C. CHaCiMe) CHa CH3. CO. CHa. C(Me) CHa... [Pg.107]

One potentially important example of CIDNP in products resulting from a radical pair formed by electron transfer involves a quinone, anthraquinone j5-sulphonic acid (23). When irradiated in the presence of the cis-syn dimer of 1,3-dimethylthymine (24), enhanced absorption due to vinylic protons and emission from the allylic methyls of the monomer (25) produced can be observed (Roth and Lamola, 1972). The phase of the polarizations fits Kaptein s rules for intermediate X... [Pg.110]

Somewhat similar observations have been made in the reaction of alkyl halides with sodium mirrors (the Wurtz reaction) in which alkyl coupling occurs. Thus, ethane formed on treatment of methyl iodide with sodium in a field of 20 G shows n.m.r. emission (Garst and Cox, 1970). The phase is consistent with polarization via T j-S mixing,... [Pg.113]

Releases to the atmosphere from production facilities and disposal sites have also been reported. Studies have shown that releases of methyl parathion to the atmosphere occur in the vicinity of pesticide-producing factories. At two predominately downwind sites located 1 mile from a plant producing methyl parathion, average monthly concentrations were <0.57 and <0.64 ng/m (Foster 1974). Air emissions from methyl parathion production facilities have been reported to contain 1.0 kg/1,000 kg pesticide produced. In addition, evaporation from holding ponds for pesticide waste potentially contributes 7.4 mg/1,000 kg pesticide produced to the atmosphere (EPA 1978d). [Pg.147]


See other pages where Methyl emission is mentioned: [Pg.218]    [Pg.87]    [Pg.174]    [Pg.347]    [Pg.492]    [Pg.264]    [Pg.210]    [Pg.148]    [Pg.263]    [Pg.248]    [Pg.33]    [Pg.506]    [Pg.516]    [Pg.337]    [Pg.105]    [Pg.146]    [Pg.95]    [Pg.260]    [Pg.95]    [Pg.143]    [Pg.481]    [Pg.553]    [Pg.795]    [Pg.149]    [Pg.152]    [Pg.148]    [Pg.171]    [Pg.352]    [Pg.10]    [Pg.17]    [Pg.96]    [Pg.106]    [Pg.158]    [Pg.74]    [Pg.347]    [Pg.85]    [Pg.180]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



2- methyl-3-butene emissions

Methyl biomass burning emission

Methyl oceanic emission

© 2024 chempedia.info