Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl acrylate effects

A tandem radical addition/cyclization process has been described for the formation of benzindolizidine systems from l-(2-iodoethyl)indoles and methyl acrylate <00TL10181>. In this process, sun-lamp irradiation of a solution of the l-(2-iodoethyl)ethylindoles 149 in refluxing benzene containing hexamethylditin and methyl acrylate effects intermolecular radical addition to the activated double bond leading to the stabilized radical 150. Intramolecular cyclization to the C-2 position of the indole nucleus then affords the benzindolzidine derivatives 151 after rearomatization of the tricyclic radical. [Pg.123]

STARCH- -P0LY(METHYL ACRYLATE)—EFFECTS OF GRAFT LEVEL AND MOLECULAR WEIGHT ON TENSILE STRENGTH... [Pg.59]

The molecular weight of a polymer can be controlled through the use of a chain-transfer agent, as well as by initiator concentration and type, monomer concentration, and solvent type and temperature. Chlorinated aUphatic compounds and thiols are particularly effective chain-transfer agents used for regulating the molecular weight of acryUc polymers (94). Chain-transfer constants (C at 60°C) for some typical agents for poly(methyl acrylate) are as follows (87) ... [Pg.167]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

The versatility of this reaction is extended to a variety of aldehydes. The bisphenol derived from 2,6-di-/ f2 -butylphenol and furfural, (25) where R = furfuryl (13), is also used as an antioxidant. The utility of the 3,5-di-/ f2 -butyl-4-hydroxyben2yl moiety is evident in stabili2ets of all types (14), and its effectiveness has spurred investigations of derivatives of hindered alkylphenols to achieve better stahi1i2ing quaUties. Another example is the Michael addition of 2,6-di-/ f2 -butyl phenol to methyl acrylate. This reaction is carried out under basic conditions and yields methyl... [Pg.61]

Studies of the copolymerization of VDC with methyl acrylate (MA) over a composition range of 0—16 wt % showed that near the intermediate composition (8 wt %), the polymerization rates nearly followed normal solution polymerization kinetics (49). However, at the two extremes (0 and 16 wt % MA), copolymerization showed significant auto acceleration. The observations are important because they show the significant complexities in these copolymerizations. The auto acceleration for the homopolymerization, ie, 0 wt % MA, is probably the result of a surface polymerization phenomenon. On the other hand, the auto acceleration for the 16 wt % MA copolymerization could be the result of Trommsdorff and Norrish-Smith effects. [Pg.430]

Fig. 3. Effect of comonomer stmcture on the glass-transition temperature of VDC copolymers (72), where A represents acrylonitrile B, methyl acrylate ... Fig. 3. Effect of comonomer stmcture on the glass-transition temperature of VDC copolymers (72), where A represents acrylonitrile B, methyl acrylate ...
There are probably several factors which contribute to determining the endo exo ratio in any specific case. These include steric effects, dipole-dipole interactions, and London dispersion forces. MO interpretations emphasize secondary orbital interactions between the It orbitals on the dienophile substituent(s) and the developing 7t bond between C-2 and C-3 of the diene. There are quite a few exceptions to the Alder rule, and in most cases the preference for the endo isomer is relatively modest. For example, whereas cyclopentadiene reacts with methyl acrylate in decalin solution to give mainly the endo adduct (75%), the ratio is solvent-sensitive and ranges up to 90% endo in methanol. When a methyl substituent is added to the dienophile (methyl methacrylate), the exo product predominates. ... [Pg.638]

Evans s bis(oxazolinyl)pyridine (pybox) complex 17, which is effective for the Diels-Alder reaction of a-bromoacrolein and methacrolein (Section 2.1), is also a suitable catalyst for the Diels-Alder reaction of acrylate dienophiles [23] (Scheme 1.33). In the presence of 5 mol% of the Cu((l )-pybox)(SbF5)2 catalyst with a benzyl substituent, tert-butyl acrylate reacts with cyclopentadiene to give the adduct in good optical purity (92% ee). Methyl acrylate and phenyl acrylate underwent cycloadditions with lower selectivities. [Pg.24]

Polymers in Schemes 12 and 13 were the first examples of the preparation of pyridinium and iminopyridinium ylide polymers. One of the more recent contributions of Kondo and his colleagues [16] deals with the sensitization effect of l-ethoxycarbonyliminopyridinium ylide (IPYY) (Scheme 14) on the photopolymerization of vinyl monomers. Only acrylic monomers such as MMA and methyl acrylate (MA) were photoinitiated by IPYY, while vinylacetate (VA), acrylonitrile (AN), and styrene were unaffected by the initiator used. A free radical mechanism was confirmed by a kinetic study. The complex of IPYY and MMA was defined as an exciplex that served as a precursor of the initiating radical. This ylide is unique in being stabilized by the participation of a... [Pg.375]

Other commercially relevant monomers have also been modeled in this study, including acrylates, styrene, and vinyl chloride.55 Symmetrical a,dienes substituted with the appropriate pendant functional group are polymerized via ADMET and utilized to model ethylene-styrene, ethylene-vinyl chloride, and ethylene-methyl acrylate copolymers. Since these models have perfect microstructure repeat units, they are a useful tool to study the effects of the functionality on the physical properties of these industrially important materials. The polymers produced have molecular weights in the range of 20,000-60,000, well within the range necessary to possess similar properties to commercial high-molecular-weight material. [Pg.460]

The micellar effect on the endo/exo diastereoselectivity of the reaction has also been investigated. The endo/exo ratio of the reaction of cyclopentadiene with methyl acrylate is affected little (compared to water) by the use of SDS and CTAB [73b], while a large enhancement was observed in SDS solution when n-butyl acrylate was the dienophile used [74]. The ratio of endo/exo products in the reaction of 1 with 113c is not affected by CTAB, SDS and C12E7 [72a]. [Pg.178]

The aqueous medium also has beneficial effects on the diastereoselectivity of the Diels-Alder reactions. The endo addition that occurs in the classical cycloadditions of cyclopentadiene with methyl vinyl ketone and methyl acrylate is more favored when the reaction is carried out in aqueous medium than when it is performed in organic solvents (Table 6.4) [2b, c]. [Pg.255]

A systematic study of the effect of pressure and density on the regiochemical course of the Diels-Alder reactions of methyl acrylate and 2-substituted 1,3-butadienes carried out in SC-CO2 was recently reported [87]. The reactions were compared with those carried out in a conventional medium such as toluene. Some results are illustrated in Table 6.15. [Pg.287]

The infrared absorption frequencies of frans-3-substituted methyl acrylates gave a significant correlation with eq. (2). The value of p obtained is 75, which indicates predominance of the resonance effect. Three sets of nmr chemical shifts also were studied. All three sets gave significant correlation with eq. (2). The values of p obtained in two of the three sets were 70 and 78. Again, the resonance effect appears to predominate. [Pg.97]

The carbonyl stretching frequencies in the ir spectra of cis-3-substituted methyl acrylates (set 12-18) were also correlated with eq. (24) and eq. (2). Barely significant correlations were obtained with both equations. The value of i// obtained in the correlation with eq. (24) was not significant. We may therefore probably exclude cases (a) and (b). As the hcaic is not significantly different from hobs > we may exclude case (c). This set is therefore probably an example of case (d) that is, there is no meaningful steric effect. [Pg.107]

COCH3 >—CN >—COOR >—Cl >—CH2Y >—OCOCH3 >—OR. The effect of a second 1-substituent is roughly additive. 2-Chlorobutadiene and 2,3-dichlorobutadiene [not included in Table XX] are the most reactive monomers examined. A methyl group usually increases reactivity (methyl methacrylate >methyl acrylate, methacrylonitrile > acrylonitrile, methal-lyl>allyl derivatives) and two chlorine atoms are nearly as effective as a carbalkoxy group. [Pg.190]

Electroorganic synthesis will be covered in section 4.5.4. It is appropriate, however, to make a reference here to the role of u/s in electroorganic processes. Atobe et al. (2000) have reported the effect of u/s in the reduction of acrylonitrile and mixtures of acrylonitrile and methyl acrylate. The selectivity for adiponitrile in the reduction of acrylonitrile was significantly increased under u/s irradiation with a power intensity over the u/s cavitation threshold ( 600 cm ). This favourable influence of u/s can be attributed to the improved mass transfer of acrylonitrile to the electrode interface by the cavitational high-speed jet-stream. [Pg.165]

Under these conditions activated olefins such as methyl acrylate, styrene and vinyl phenylsulfoxide were found to be effective in reacting with 12 (22). [Pg.452]

The results summarized in Table IX indicated that another copolymer which does not contain quaternary nitrogen atoms, poly (DMAEMA - co - methyl acrylate) was also an effective silica fines stabilizer. [Pg.222]

Increasing the molecular weight of a copolymer containing 5% methyl acrylate (MA) from 100,000 to 1,000,000 daltons had little effect on silica stabilization effectiveness (see Table IX). Increasing the methyl acrylate content from 5% to 30% had also little effect on silica fines stabilization effectiveness. Acidizing substantially reduced the effectiveness of this class of copolymer. Results for the injection of 10,000 pore volumes of water indicated that silica fines elution from the test column was substantially reduced on a long-term basis. [Pg.222]

TABLE IX. EFFECTIVENESS OF DIMETHYLAMINOETHYLACRYLATE METHYL ACRYLATE COPOLYMERS AS... [Pg.223]


See other pages where Methyl acrylate effects is mentioned: [Pg.11]    [Pg.12]    [Pg.436]    [Pg.284]    [Pg.391]    [Pg.55]    [Pg.20]    [Pg.715]    [Pg.557]    [Pg.241]    [Pg.190]    [Pg.101]    [Pg.647]    [Pg.696]    [Pg.224]    [Pg.911]    [Pg.119]    [Pg.591]    [Pg.120]    [Pg.106]    [Pg.141]    [Pg.374]    [Pg.67]    [Pg.11]    [Pg.10]    [Pg.14]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Acrylates effects

Acrylates methyl acrylate

Methyl effect

© 2024 chempedia.info