Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methacrylic acid structure

The vinyl esters are derived from epoxy resins, adducts of bis-phenol A and epichlorhydrin, by reaction of the terminal epoxide groups with methacrylic acid (Structure 9.2) [11, 12]. Thus, these resins have only terminal unsaturation, but do... [Pg.430]

The ethylene/methacrylate salt ionomers, as produced commercially, are in fact terpolymers, since some free methacrylic acid structures are also present. The salt unit concentrations of the ionomers which have been studied are somewhat less than 10mol%. TG measurements have indicated stabilities for the Na and Zn ionomers which are fairly comparable with that of PE. The residues at... [Pg.1249]

Polylacrylic Acid) and Poly(methacrylic Acid). Glacial acrylic acid and glacial meth-acrylic acid can be polymerized to produce water-soluble polymers having the following structures ... [Pg.1013]

Acrylic and methacrylic acids and their esters are highly versatile materials in that the acid and ester side groups can partake in a variety of reactions to produce a very large number of polymerisable monomers. One particularly interesting approach is that in which two methacrylic groupings are linked together so that there are two, somewhat distant, double bonds in the molecule. In these cases it is possible to polymerise through each of these double bonds separately and this will lead eventually to a cross-linked network structure. [Pg.418]

Laminating resins have been offered by Akzo (Diacryl 101), Dow (Derakane Vinyl Esters) and Showa (Spilac). Typical of these is Diacryl 101, which is manufactured by esterification of the addition product of ethylene oxide to bis-phenol A with methacrylic acid. They exhibit lower curing shrinkage than the polyester laminating resins during cure. The structure of Diacryl 101 is... [Pg.419]

Materials containing the above structure in the polymer chain may be made from copolymers of methacrylic acid and methacrylonitrile. Ammonia-producing additives (such as urea and ammonium hydrogen carbonate) are added to the... [Pg.420]

The methacrylic backbone structure makes the spherical Toyopearl particles rigid, which in turn allows linear pressure flow curves up to nearly 120 psi (<10 bar), as seen in Fig. 4.45. Toyopearl HW resins are highly resistant to chemical and microbial attack and are stable over a wide pH range (pH 2-12 for operation, and from pH 1 to 13 for routine cleaning and sanitization). Toyopearl HW resins are compatible with solvents such as methanol, ethanol, acetone, isopropanol, -propanol, and chloroform. Toyopearl HW media have been used with harsh denaturants such as guanidine chloride, sodium dodecyl sulfate, and urea with no loss of efficiency or resolution (40). Studies in which Toyopearl HW media were exposed to 50% trifluoroacetic acid at 40°C for 4 weeks revealed no change in the retention of various proteins. Similarly, the repeated exposure of Toyopearl HW-55S to 0.1 N NaOH did not change retention times or efficiencies for marker compounds (41). [Pg.150]

Structure. For example, acrylic acid in an acrylate polymer is not tolerated as well as methacrylic acid. For acrylate polymers in TFiF, approximate levels of some polar monomers are shown in Table 19.1. [Pg.543]

For flexible chain copolymers based on acrylic and methacrylic acids (AA and MA) crosslinked with a polyvinyl component, the inhomogeneity of the structures formed depends on the nature of the crosslinking agent, its content in the reaction mixture and the thermodynamic quality of the solvent [13,14],... [Pg.5]

The salt effect is very strong in polyconjugated polyelectrolytes. Figure 15 is a graph of the proton dissociation energy vs. the dissociation degree of PPA of different structures. Also, the graphs for poly(methacrylic acid) and a copolymer... [Pg.29]

A variety of ionomers have been described in the research literature, including copolymers of a) styrene with acrylic acid, b) ethyl acrylate with methacrylic acid, and (c) ethylene with methacrylic acid. A relatively recent development has been that of fluorinated sulfonate ionomers known as Nafions, a trade name of the Du Pont company. These ionomers have the general structure illustrated (10.1) and are used commercially as membranes. These ionomers are made by copolymerisation of the hydrocarbon or fluorocarbon monomers with minor amounts of the appropriate acid or ester. Copolymerisation is followed by either neutralisation or hydrolysis with a base, a process that may be carried out either in solution or in the melt. [Pg.149]

Ethylene ionomers consist of copolymers of ethylene and an organic add, such as methacrylic acid, the acid moieties of which have been neutralized to form a metal salt. The metal salts from neighboring chains tend to form clusters, such as the one shown schematically in Fig. 18.3. The net result is the overall structure shown in Fig. 18.2 g), in which the ionic clusters form weak crosslinks between adjacent chains. Ionomers also contain short and long chain branches, which are similar to those found in low density polyethylene. [Pg.288]

Coleman and Sivy also used an infrared transmission cell to undertake degradation studies under reduced pressure on a series of poly(acrylonitrile) (ACN) copolymers [30-33]. Thin films prepared from a polymer were mounted in the specially designed temperature-controlled cell mounted within the infrared spectrometer. The comparative studies were made on ACN copolymers containing vinyl acetate [30,32], methacrylic acid [30,31] and acrylamide [30,33]. The species monitored was the production of the cyclised pyridone structure. This was characterised in part by loss of C=N stretch (vC = N) intensity at 2,240 cm-1 accompanied by the appearance and increase in intensity of a doublet at 1,610/1,580 cm-1. [Pg.407]

Figure 14.6.8 The molecular structure of the monomer methacrylic acid (MAA). Figure 14.6.8 The molecular structure of the monomer methacrylic acid (MAA).
As an example of blends with attractive interactions, Fig. 65 shows a superstructure in which interactions between methacrylic acid groups and pyridine side groups of a polystyrene-fc-polybutadiene-fo-poly(f-butyl methacry-late-staf-methacrylic acid) (PS-b-PB-b-P(MAA-sfaf-fBMA)) triblock quater-polymer and a PS- -P2VP diblock copolymer lead to a wavy lamellar structure with cylinders from mixed P2VP and P(MAA-sfaf-fBMA) blocks [194],... [Pg.214]

Philippova and Starodubtzev have also extensively studied the complex-ation behavior of polyacids and PEG, especially, the system of crosslinked of poly(methacrylic acid) and linear poly(ethylene glycol) (Philippova and Starodubtzev, 1995 Philippova et al., 1994). They observed that decreasing the molecular weight of PEG from 6000 to 1500 resulted in its slower diffusion into the swollen network of PMAA, and a drastic decrease in both the stability and equilibrium composition of the intermacromolecular complex. Analysis of dried polymer networks of PMAA with absorbed PEG chains by FT-IR spectroscopy revealed the presence of two types of hydrogen bonded structures (1) dimers of methacrylic acid at absorption frequency of 1700 cm-1 and (2) interpolymer complexes of PMAA and PEG at 1733 cm-1. In addition, they also suggested as a result of their studies, that the hydrogen bonded dimer of PMAA forms preferentially to the intermacromolecular complex between the PMAA network and PEG chains. [Pg.94]

Methacrylic acid also polymerizes in bulk under precipitating conditions. It forms molecular associations very similar to those of acrylic acid. However, the conversion curves were found to be linear under a variety of experimental conditions temperatures of 16.5 to 60°C and broad ranges of initiation rates and monomer concentration in numerous solvents (7). It was assumed that structures of type III do arise but owing to steric hindrance and to the rigidity of the poly(methacrylic acid) molecule the monomer cannot align to form a "pre-oriented" complex as in the case of acrylic acid and propagation is not favored. [Pg.241]

Auto-acceleration was observed in the homopolymerization of methacrylic acid solutions over limited concentration ranges in methanol and in water. Perhaps under such conditions swelling of the polymer favors monomer diffusion leading to a larger amount of pre-oriented structures III. Alternatively, a monomer-solvent complex may arise which favors a pre-oriented structure and thus, may be responsible for the onset of a matrix effect (9). [Pg.241]

Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads... Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads...
Itaconic Acid. Structurally an a-substituted methacrylic acid, itaconic acid constitutes a C5 building block with significant market opportunities. It is currently produced via fungal fermentation at about 10,000 t/a and mainly used as a specialty comonomer in acrylic or methacrylic resins, as incorporation of small amounts of itaconic acid into polyacrylonitrile significantly improve their dyeability. [Pg.41]

These phenomena occurred only when isobutane-rich conditions were used. Indeed, when the reaction was carried out under isobutane-lean conditions (e.g., with 1% isobutane in the feed), the partial structural decomposition and the reduction of the POM did not occur, and similarly the changes in catalytic performance also were not observed, but there was a minor change in selectivity to methacrylic acid. This means that the reduction of the POM was due to the isobutane-rich conditions, and that the structural decomposition was due to the larger amount of reaction heat released at the catalyst surface under these conditions. Overheating of the catalyst particles took place, with temperatures that favored the incipient structural decomposition of the POM. [Pg.276]

STRUCTURE AND SOLUTE SIZE EXCLUSION OF POLY(METHACRYLIC ACID)/POLY(A/-ISOPROPYL ACRYLAMIDE) INTERPENETRATING POLYMERIC NETWORKS... [Pg.6]

Structure and Solute Size Exclusion of Poly(methacrylic acid)/Poly(A -isopropyl acrylamide) Interpenetrating Polymeric Networks... [Pg.162]

The temperature-sensitive poly(A-isopropyl acrylamide) and pH-sensitive poly(methacrylic acid) were used as the two component networks in the IPN system. Since both A-isopropyl acrylamide (NIPAAm) (Fisher Scientific, Pittsburgh, PA) and methacrylic acid (MAA) (Aldrich, Milwaukee, Wl) react by the same polymerization mechanism, a sequential method was used to avoid the formation of a PNIPAAm/PMAA copolymer. A UV-initiated solution-polymerization technique offered a quick and convenient way to achieve the interpenetration of the networks. Polymer network I was prepared and purified before polymer network II was synthesized in the presence of network I. Figure I shows the typical IPN structure. [Pg.163]

Weiss, A. M., Adler, K. P, Grodzinsky, A. J., and Yarmush, M. L. Variable permeability membranes. Network structure of poly(methacrylic acid) and its relation to diffusive transport. J. Membr. Set, 1991, 58, 153-173. [Pg.172]


See other pages where Methacrylic acid structure is mentioned: [Pg.1305]    [Pg.1305]    [Pg.793]    [Pg.793]    [Pg.164]    [Pg.73]    [Pg.434]    [Pg.360]    [Pg.212]    [Pg.376]    [Pg.259]    [Pg.267]    [Pg.279]    [Pg.47]    [Pg.200]    [Pg.595]    [Pg.96]    [Pg.57]    [Pg.68]    [Pg.143]    [Pg.134]    [Pg.140]    [Pg.268]    [Pg.8]   
See also in sourсe #XX -- [ Pg.753 ]

See also in sourсe #XX -- [ Pg.753 ]




SEARCH



Acids methacrylic acid

Methacrylic acid

Methacrylic acid methacrylate

© 2024 chempedia.info