Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methacrylate cast resins

Unsaturated polyester and methacrylate casting resins are normally cured with organic peroxides. The polyester casting resins are dissolved in monostyrene, and temperatures up to 200°C are reached in their polymerization. Thick-walled articles in particular are often exposed to heat for a long period of time. The required heat resistance of the organic pigments used is governed by this. [Pg.176]

Methyl methacrylate casting resins peroxide catalyzed... [Pg.181]

P.R.164 was also found in cast resin composed of methacrylate and unsaturated polyester. The pigment does not affect the hardening process of such media, which may be carried out, for instance, by using peroxides. An important field of application was in the coloration of various polyurethanes, for which the pigment was also sold in the form of a pigment preparation. [Pg.303]

P.R.149 also lends color to cast resins made from materials such as unsaturated polyester or methacrylic acid methylester, which are polymerized with peroxide catalysts. P.R.149 is equally lightfast in these media. In polycarbonate, the pigment tolerates exposure to more than 320°C. This is an asset in view of the fact that polycarbonate shows high melt viscosity and is thus processed at up to 340°C. The list of applications also includes other media, such as PUR foams and elastomers, for which P.R.149 is recommended because of its good heat stability and its coloristic properties. [Pg.479]

Incorporated in methacrylate and unsaturated polyester cast resins, P.R.88 not only withstands several hours of thermal exposure during processing but is also resistant to the peroxides which are used as catalysts. Some types accelerate the polymerization process, i.e., the hardening of the plastic. [Pg.500]

Worked into cast resins based on methacrylate or unsaturated polyester, P.V.23 has the advantage of being fast to peroxides, which act as catalysts in these media. The lightfastness of such systems is between step 7 and step 8 on the Blue Scale, both for transparent and opaque colorations. [Pg.535]

Atlas M 130. [Degussa] Methacrylate-based resin filled with aluminum mass cast tooling resin. [Pg.39]

Methyl methacrylate acrylic resin sheet, cast PEG-3 dimethacrylate acrylic resin sheet, crosslinked Methacrylamide... [Pg.4789]

Glyceryl methacrylate acrylic resin, paint Glyceryl methacrylate acrylic resin, soft contact lens Glyceryl methacrylate acrylic rod, cast PEG-3 dimethacrylate acrylic sheet modifier Ethylene glycol dimethacrylate acrylonitrile inhibitor Hydroquinone monomethyl ether acrylonitrile mfg. [Pg.4789]

This book has been divided into three areas chemical detection, biological detection, and decontamination. The subject matter in the chapters include cross-linked divinyl benzene-substituted methacrylate polymers (Chapter 2), porous silicon (Chapter 3), reactive glass surfaces (Chapter 4), polycarbosilanes (Chapter 5), non-aqueous, chemically cross-linked polybutadiene gels (Chapter 6), conducting polyaniline nanofibers (Chapter 7), organically doped polystyrene and polyvinyltoluene (Chapter 8), electroplated polymer cast resins (Chapter 9), self assembled monolayers (Chapter 10), amphiphilic functionalized norbomene polymers (Chapter 11), transition metal substituted polyoxometalates (POMs) (Chapter 12), cross-linked divinyl-benzamide phospholipids (Chapter 13), and silica and organo silyl polymers (Chapter 14). [Pg.6]

In the eady 1920s, experimentation with urea—formaldehyde resins [9011-05-6] in Germany (4) and Austria (5,6) led to the discovery that these resins might be cast into beautiful clear transparent sheets, and it was proposed that this new synthetic material might serve as an organic glass (5,6). In fact, an experimental product called PoUopas was introduced, but lack of sufficient water resistance prevented commercialization. Melamine—formaldehyde resin [9003-08-1] does have better water resistance but the market for synthetic glass was taken over by new thermoplastic materials such as polystyrene and poly(methyl methacrylate) (see Methacrylic polya rs Styrene plastics). [Pg.321]

Polymethacrylates. Poly(methyl methacrylate) [9011-14-7] is a thermoplastic. Itis the acryUc resin most used in building products, frequendy as a blend or copolymer with other materials to improve its properties. The monomer is polymerized either by bulk or suspension processes. Eor glazing material, its greatest use, only the bulk process is used. Sheets are prepared either by casting between glass plates or by extmsion of pellets through a sHt die. This second method is less expensive and more commonly used. Peroxide or azo initiators are used for the polymerization (see Methacrylic polymers). [Pg.327]

Methyl methacrylate is polymerized to poly(methyl methacrylate), which is used in cast and extruded sheet (32%), surface coatings (24%), molding powder and resins (15%), impact modifiers (13%), and emulsion polymers... [Pg.230]

When convective heating is used it is important to localize the heating channels on an appropriate distance from the tool surface. The part can be damaged by print-through if the distance between the surface and the channels is too small. The surface temperature may vary and give rise to unacceptable cure variations if the distance is too large. As a rule of thumb the distance to the surface in mass cast tools from aluminum-filled methacrylic resin should be... [Pg.384]

By a casting process using about one-third acrylic resin, usually methyl methacrylate, and two-thirds ATH, integrated counter top/bowl units and sheet can be fabricated. These marblelike products are very durable, both retaining their initial appearance and having a renewable surface. [Pg.337]

ABA ABS ABS-PC ABS-PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS Acrylonitrile-butadiene-acrylate Acrylonitrile-butadiene-styrene copolymer Acrylonitrile-butadiene-styrene-polycarbonate alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile-chlorinated pe-styrene Acrylonitrile-ethylene-propylene-styrene Acrylonitrile-methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic-styrene-acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate-butyrate Cellulose acetate-propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene-chlorotrifluoroethylene copolymer Ethylene-ethyl acrylate Ethylene-methyl acrylate Ethylene methacrylic acid Ethylene-methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene-propylene Ethylene-propylene rubber Ethylene-styrene copolymers Polyethylene-vinyl acetate Polyethylene-vinyl alcohol copolymers Fluorinated ethylene-propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate-butadiene-styrene... [Pg.958]

The methyl, ethyl, and butyl esters of acrylic and methacrylic acids are polymerized under the influence of heat, light, and peroxides. The polymerization reaction is exothermic and may be carried out in bulk for castings, or by emulsion, or in solution. The molecular weight decreases as the temperature and catalyst concentration are increased. The polymers are noncrystalline and thus very clear. Such resins are widely used because of their clarity, brilliance, ease of forming, and light weight. They have excellent optical properties and are used for camera, instrument, and spectacle lenses. [Pg.27]

U.S. production of methyl methacrylate in 1999 totaled 1.4 billion lb, which is about 82 percent of world capacity. Its uses are almost exclusively based on polymerization to poly(methyl methacrylate), which, because of its physical strength, weathering resistance, optical clarity, and high refractive index, has major uses in cast and extruded sheet (33%), molding powders and resins (16%), and surface coatings (22%). [Pg.350]


See other pages where Methacrylate cast resins is mentioned: [Pg.825]    [Pg.825]    [Pg.176]    [Pg.486]    [Pg.183]    [Pg.70]    [Pg.4]    [Pg.728]    [Pg.15]    [Pg.491]    [Pg.259]    [Pg.322]    [Pg.490]    [Pg.26]    [Pg.181]    [Pg.322]    [Pg.17]    [Pg.20]    [Pg.333]    [Pg.116]    [Pg.368]    [Pg.181]    [Pg.63]    [Pg.181]    [Pg.291]    [Pg.334]    [Pg.208]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Cast resins

Methacrylic resins

© 2024 chempedia.info