Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Meters/metering analyzers

Discontinuous operation (idle periods) of instruments such as flow meters, pH meters, analyzers, etc., could lead to failure as a result of plugging, drying out, etc. [Pg.113]

Spectro- meter Analyzer Low Single quadrupole enough... [Pg.699]

The function of the oxygen sensor and the closed loop fuel metering system is to maintain the air and fuel mixture at the stoichiometric condition as it passes into the engine for combustion ie, there should be no excess air or excess fuel. The main purpose is to permit the TWC catalyst to operate effectively to control HC, CO, and NO emissions. The oxygen sensor is located in the exhaust system ahead of the catalyst so that it is exposed to the exhaust of aU cylinders (see Fig. 4). The sensor analyzes the combustion event after it happens. Therefore, the system is sometimes caUed a closed loop feedback system. There is an inherent time delay in such a system and thus the system is constandy correcting the air/fuel mixture cycles around the stoichiometric control point rather than maintaining a desired air/fuel mixture. [Pg.490]

The sensor is the element of an instrument directly influenced by the measured quantity. In temperature measurement the thermal mass (capacity) of the sensor usually determines the meter s dynamics. The same applies to thermal anemometers. In IR analyzers used for concentration measurement, the volume of the flow cell and the sample flow rate are the critical factors. Some instruments, like sound-level meters, respond very fast, and follow the pressure changes up to several kHz. [Pg.1132]

Unanticipated gases can be determined. Table 13.21 shows the measuring ranges and detection limits of an FTIR analyzer. The detection limit depends on the optical path in the sample gas chamber this can range from a few meters to about 10 m in industrial instruments. [Pg.1305]

Portable sound level meters are also available which can measure percentiles. These either hold the results in a memory which can be separately interrogated or may be connected to a computer for a printout. Larger machines (known as environmental noise analyzers) are available which can record percentiles and Leq readings and produce a printout. These are resistant to weather and can be left on-site for up to a week. [Pg.654]

The data logger or microprocessor selected by your predictive maintenance program is critical to the success of the program. There is a wide variety of systems on the market that range from handheld overall value meters to advanced analyzers that can provide an almost unlimited amount of data. The key selection parameters for a data acquisition instrument should include the expertise required to operate, accuracy of data, type of data, and manpower required to meet the program demands. [Pg.806]

In all space heating boiler systems there is a tendency to keep water treatment programs as simple as possible. Ideally, chemical inhibitors should be added in proportion to MU demands, metered water consumption, oxygen content, or other preemptive measurement. More typically, the standard process is to periodically (weekly to monthly) analyze the BW for a few basic control parameters, including measuring the multimetal corrosion inhibitor reserve, and then to merely top-up the inhibitor when the reserve is below the minimum specification. Chemical treatment often is added directly to the BW by hand-pump via a hose cock (bib cock) connection. [Pg.178]

Little work has been carried out using electrochemical cells to analyze for impurities. Thermodynamic data have been measured for the interaction of nuclear fuels with liquid potassium using cells based on ThOj-YjOj electrolytes, so such cells could be used to monitor oxygen. Both the diffusion and electrochemical types of hydrogen and carbon meters should function satisfactorily in liquid potassium. [Pg.346]

An experimental fluidized bed reactor has a 2.5 cm in diameter and 230 cm in height, and the distributor has 32 holes and each hole was 2 mm in diameter. 200 mesh net was put on the distributor to prevent particles from falhng down. The cyclone was made by standard proportion to collect fine particles. Air flow rate was controlled by a flow meter, CO2 (99.9%) flow rate was controlled by mass flow controller and then 10% CO2 inlet concentration was maintained by mixing in a mixing chamber. CO2 outlet concentration was also measured by CO2 analyzer (CD 95, Geotechnical instruments, England). [Pg.550]

Air samples are typically collected by passing a known volume of air for a specific time period through Chromosorb 102 air sampling mbes (e.g. l.SLmin for 2h) using a Gilian or similar pump and a flow meter. For extraction, the contents of the tube are emptied into a 15-mL distillation receiver and extracted with 10 mL of toluene briefly at 5-min intervals for 15 min. After centrifugation, a portion of the toluene is removed and analyzed using GC/ECD. [Pg.528]

Figure 5.6. Diagram of a low-energy, high-angle electron-impact spectrometer. (A) Electron gun (B) monochromator (180° spherical electrostatic energy selector) (C) electron optics (D) scattering chamber (E) analyzer (180° spherical electrostatic energy selector) (F) electron multiplier (G) amplifier and pulse discriminator (H) count-rate meter (I) multichannel scaler (J) X Y recorder (K) digital recorder. (After Kupperman et a/.<42))... Figure 5.6. Diagram of a low-energy, high-angle electron-impact spectrometer. (A) Electron gun (B) monochromator (180° spherical electrostatic energy selector) (C) electron optics (D) scattering chamber (E) analyzer (180° spherical electrostatic energy selector) (F) electron multiplier (G) amplifier and pulse discriminator (H) count-rate meter (I) multichannel scaler (J) X Y recorder (K) digital recorder. (After Kupperman et a/.<42))...
At the completion of a run, the autoclave was cooled by electric fan to room temperature and the autoclave gases were vented through gas meter and analyzed by gas chromatography. Liquid portions of the samples were subjected to gas chromatographic analysis to determine the composition of products. [Pg.287]

In this chapter we will illustrate and analyze some of the more common methods for measuring flow rate in conduits, including the pitot tube, venturi, nozzle, and orifice meters. This is by no means intended to be a comprehensive or exhaustive treatment, however, as there are a great many other devices in use for measuring flow rate, such as turbine, vane, Coriolis, ultrasonic, and magnetic flow meters, just to name a few. The examples considered here demonstrate the application of the fundamental conservation principles to the analysis of several of the most common devices. We also consider control valves in this chapter, because they are frequently employed in conjunction with the measurement of flow rate to provide a means of controlling flow. [Pg.293]

After the activation period, the reactor temperature was decreased to 453 K, synthesis gas (H2 CO = 2 1) was introduced to the reactor, and the pressure was increased to 2.03 MPa (20.7 atm). The reactor temperature was increased to 493 K at a rate of 1 K/min, and the space velocity was maintained at 5 SL/h/gcat. The reaction products were continuously removed from the vapor space of the reactor and passed through two traps, a warm trap maintained at 373 K and a cold trap held at 273 K. The uncondensed vapor stream was reduced to atmospheric pressure through a letdown valve. The gas flow was measured using a wet test meter and analyzed by an online GC. The accumulated reactor liquid products were removed every 24 h by passing through a 2 pm sintered metal filter located below the liquid level in the CSTR. The conversions of CO and H2 were obtained by gas chromatography (GC) analysis (micro-GC equipped with thermal conductivity detectors) of the reactor exit gas mixture. The reaction products were collected in three traps maintained at different temperatures a hot trap (200°C), a warm trap (100°C), and a cold trap (0°C). The products were separated into different fractions (rewax, wax, oil, and aqueous) for quantification. However, the oil and wax fractions were mixed prior to GC analysis. [Pg.250]


See other pages where Meters/metering analyzers is mentioned: [Pg.253]    [Pg.100]    [Pg.417]    [Pg.397]    [Pg.131]    [Pg.58]    [Pg.766]    [Pg.895]    [Pg.432]    [Pg.651]    [Pg.90]    [Pg.471]    [Pg.128]    [Pg.95]    [Pg.137]    [Pg.26]    [Pg.390]    [Pg.538]    [Pg.34]    [Pg.71]    [Pg.359]    [Pg.329]    [Pg.132]    [Pg.281]    [Pg.118]    [Pg.149]    [Pg.305]    [Pg.467]    [Pg.421]    [Pg.274]    [Pg.28]    [Pg.455]    [Pg.458]   


SEARCH



Impedance Analyzers and LCR Meters

© 2024 chempedia.info