Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonaceous chondrite meteorite

An alternative source of prebiotic molecules on the early Earth is from meteorites. Carbonaceous chondrite meteorites contain abundant carbon, present in a variety of molecular forms, including amino acids, polyols such as sugars and sugar-alcohols. These molecules are all important to life and form key components of nucleic acids and cell membranes (Cooper et al., 2001). Similar molecular evidence for amino acids is found in even more ancient fragments of the early Universe -IDPs. These molecules formed either in the solar nebula or in an interstellar environment (Flynn et al., 2003). Comets have also been considered a viable potential source of prebiotic molecules although currently the view is that most organic material was delivered by asteroids rather than by comets (Dauphas Marty, 2002). [Pg.218]

Becker L, Glavin DP, Pada JL (1997) Polycyclic aromatic hydrocarbons (PAHs) in Antarctic martian meteorites, carbonaceous chondrites, and polar ice. Geochim Cosmochim Acta 61 475-481... [Pg.682]

Water and carbon play critical roles in many of the Earth s chemical and physical cycles and yet their origin on the Earth is somewhat mysterious. Carbon and water could easily form solid compounds in the outer regions of the solar nebula, and accordingly the outer planets and many of their satellites contain abundant water and carbon. The type I carbonaceous chondrites, meteorites that presumably formed in the asteroid belt between the terrestrial and outer planets, contain up to 5% (m/m) carbon and up to 20% (m/m) water of hydration. Comets may contain up to 50% water ice and 25% carbon. The terrestrial planets are comparatively depleted in carbon and water by orders of magnitude. The concentration of water for the whole Earth is less that 0.1 wt% and carbon is less than 500 ppm. Actually, it is remarkable that the Earth contains any of these compounds at all. As an example of how depleted in carbon and water the Earth could have been, consider the moon, where indigenous carbon and water are undetectable. Looking at Fig. 2-4 it can be seen that no water- or carbon-bearing solids should have condensed by equilibrium processes at the temperatures and pressures that probably were typical in the zone of fhe solar... [Pg.22]

Carbonaceous chondrites (C-chondrites) account for only 2-3% of the meteorites so far found, but the amount of research carried out on them is considerable. C-chondrites contain carbon both in elemental form and as compounds. They are without doubt the oldest relicts of primeval solar matter, which has been changed only slightly or not at all by metamorphosis. C-chondrites contain all the components of the primeval solar nebula, apart from those which are volatile they are often referred to as primitive meteorites . [Pg.67]

UV radiation hypothetical, but so is the transport of molecules from outer space to Earth. Recent analyses of the Murchison meteorite by two scientists from the University of Arizona, Tucson (Cronin and Pizzarello, 1997 Cronin, 1998) have shown it to contain the four stereoisomeric amino acids DL-a-methylisoleucine and DL-a-methylalloisoleucine. In both cases, the L-enantiomer is present in a clear excess (7.0 and 9.1%). Similar results were obtained for two other a-methyl amino acids, isovaline and a-methylvaline. Contamination by terrestrial proteins can be ruled out, since these amino acids are either not found in nature or are present in only very small amounts. Since the carbonaceous chondrites are thought to have been formed around 4.5 billion years ago (see Sect. 3.3.2), the amino acids referred to above must have been subject to one or more asymmetric effects prior to biogenesis. [Pg.251]

Now, apart from the planets, many meteorites were formed, moving in quite different orbits and of quite different chemical composition. In particular, the so-called C-l meteorites composed of carbonaceous chondrites have a composition of elements much closer to that of the Sun. It is proposed (see for example Harder and also Robert in Further Reading) that many of these meteorites collided with very early Earth and became incorporated in it, so that eventually some 15% of Earth came from this material (see Section 1.11). Other planets such as Mars and the Moon could have had similar histories, but the remote planets and Venus are very different. [Pg.4]

The largest class of meteorite finds is stony meteorites, made principally of stone. The general stony classification is divided into three subclasses called chondrites, carbonaceous chondrites and achondrites, and it is at this level of distinction at which we will stop. Before looking at their mineral and isotopic structure in more detail, it is useful to hold the composition of the Earth s crust in mind here for comparison. The Earth s crust is 49 per cent oxygen, 26 per cent silicon, 7.5 per cent aluminium, 4.7 per cent iron, 3.4 per cent calcium, 2.6 per cent sodium, 2.4 per cent potassium and 1.9 per cent magnesium, which must have formed from the common origin of the solar system. [Pg.162]

The Murchison meteorite shown in Figure 6.7, like all meteorites, is named after the place from which it was recovered and in this case it is the town of Murchison, Victoria in Australia about 100 km north of Melbourne. The fall occurred in 1969 and was followed by an analysis of the chemical composition in some considerable detail. The Murchison meteorite is a carbonaceous chondrite containing about 2 per cent carbon, some as inorganic carbonates, and some as soluble compounds such as amino acids but the bulk as a macromolecular heterogeneous material referred to as kerogen. [Pg.171]

Meteorites General classification into stony, stony-iron and iron, each with an interesting mineralogy, notably the carbonaceous chondrites... [Pg.190]

Carbonaceous chondrite A meteorite containing once-molten globules of rock called chondrules that are surrounded by carbon-containing species. [Pg.308]

Murchison meteorite A carbonaceous chondrite meteorite landing 100 miles north of Melbourne in a town called Murchison. [Pg.313]

Essentially the same amino acids, and nearly equal quantities of D and L enantiomers, were detected in the Murray meteorite, another type II carbonaceous chondrite [6]. Recent expeditions to Antarctica have returned with a large number of meteorites, many of which are carbonaceous chondrites. These may have been protected from terrestrial contamination by the pristine Antarctic ice. Careful analysis of two of these, the Yamato (74662) and the Allan Hills (77306), both type II carbonaceous chondrites, by ion exchange chromatography, gas chromatography, and GC/MS, have detected a wide variety of both protein and non-protein amino acids in approximately equal D and L abundances [9,10]. Fifteen amino acids were detected in the Yamato meteorite and twenty in the Allan Hills, the most abundant being glycine and alanine. The amino acid content of the Yamato meteorite is comparable with that of the Murchison and Murray, but the Allan Hills contains 1/5 to 1/10 that quantity. Unlike earlier meteorites from other locations, the quantities of amino acids in the exterior and interior portions of the Yamato and Allan Hills meteorites are almost identical [9,10]. Thus, these samples may have been preserved without contamination since their fall in the blue ice of Antarctica, which js 250,000 years old in the region of collection. [Pg.391]

Hydroxypyrimidines have been detected in the Murchison, Murray, and Orgueil carbonaceous chondrites in abundances similar to those of amino acids [7]. Earlier analyses of the Orgueil meteorite By thin layer chromatography of organic extracts indicated the presence of melamine, ammeline, adenine, and guanine [8]. Although these could not be confirmed by Folsome, et al., [7] using GC/MS, recent studies by Schwartz [11] and by Hayatsu, et al., [12] have shown that these constituents of the nucleic acids may indeed exist in the carbonaceous chondrites. [Pg.391]

The careful study of at least five different carbonaceous chondrites establishes the fact that these meteorites contain carbon compounds of extraterrestrial origin and of great significance in chemical evolution. Their presence confirms that the chemical reaction paths producing biologically important monomer molecules occur in the far reaches of our solar system. [Pg.392]

Refractory materials in primitive meteorites were investigated first as they have the best chance of escaping homogenization in the early solar system. Inclusions in C3 carbonaceous chondrites exhibit widespread anomalies for oxygen and the iron group elements. Only a few members, dubbed FUN (for Fractionated and Unknown Nuclear effects), also display anomalous compositions for the heavy elements. Anomalies in inclusions have generally been connected with explosive or supernova nucleosynthesis. [Pg.25]

Other meteorite classes like C2, CO and ordinary chondrites contain much smaller inclusions less than 1 mm (MacPherson et al. 1988) and require ion microprobe techniques to evaluate the isotopic compositions. On the least metamorphosed side. Cl have very few inclusions or oxide grains, but are the carrier of the greatest amounts of stellar nanodiamond and other carbides (Anders and Zirmer 1993). As will be shown for Cr anomalies in carbonaceous chondrites, the survival of the mineral carriers of the anomalies also depends on the metamorphic grade of the meteorites. Nevertheless, isotopic anomalies have also been formd in higher metamorphic grade from other classes, especially in the reduced enstatite chondrites. [Pg.31]

Figure 8. Figure (a) after Clayton et al. (1976, 1977). The scales are as in Figure 1. The O isotopic compositions of the different meteorite classes are represented ordinary chondrites (H, L, LL), enstatite chondrites (EFl, EL), differentiated meteorites (eucrites, lAB irons, SNCs) and some components of the carbonaceous chondrites. As the different areas do not overlap, a classification of the meteorites can be drawn based on O isotopes. Cr (b) and Mo (c) isotope compositions obtained by stepwise dissolution of the Cl carbonaceous chondrite Orgueil (Rotaru et al. 1992 Dauphas et al. 2002), are plotted as deviations relative to the terrestrial composition in 8 units. Isotopes are labeled according to their primary nucleosynthetic sources. ExpSi is for explosive Si burning and n-eq is for neutron-rich nuclear statistical equilibrium. The open squares represent a HNOj 4 N leachate at room temperature. The filled square correspond to the dissolution of the main silicate phase in a HCl-EIF mix. The M pattern for Mo in the silicates is similar to the s-process component found in micron-size SiC presolar grains as shown in Figure 7. Figure 8. Figure (a) after Clayton et al. (1976, 1977). The scales are as in Figure 1. The O isotopic compositions of the different meteorite classes are represented ordinary chondrites (H, L, LL), enstatite chondrites (EFl, EL), differentiated meteorites (eucrites, lAB irons, SNCs) and some components of the carbonaceous chondrites. As the different areas do not overlap, a classification of the meteorites can be drawn based on O isotopes. Cr (b) and Mo (c) isotope compositions obtained by stepwise dissolution of the Cl carbonaceous chondrite Orgueil (Rotaru et al. 1992 Dauphas et al. 2002), are plotted as deviations relative to the terrestrial composition in 8 units. Isotopes are labeled according to their primary nucleosynthetic sources. ExpSi is for explosive Si burning and n-eq is for neutron-rich nuclear statistical equilibrium. The open squares represent a HNOj 4 N leachate at room temperature. The filled square correspond to the dissolution of the main silicate phase in a HCl-EIF mix. The M pattern for Mo in the silicates is similar to the s-process component found in micron-size SiC presolar grains as shown in Figure 7.
Virag A, Zinner E, Lewis RS, Tang M (1989) Isotopic compositions of H, C, and N in C8 diamonds from the Allende and Murray carbonaceous chondrites. Lunar Planet Sci XX 1158-1159 Volkening J, Papanastassiou DA (1989) Iron isotope anomalies. Astrophys J 347 L43-L46 Volkening J, Papanastassiou DA (1990) Zinc isotope anomalies. Astrophys J 358 L29-L32 Wadhwa M, Zinner EK, Crozaz G (1997) Manganese-chromium systematics in sulfides of unequilibrated enstatite chondrites. Meteorit Planet Sci 32 281-292... [Pg.63]

Zitmer E (1997) Presolar material in meteorites an overview. In Astrophysical Implications of the I aboratory Study of Presolar Materials. Bematowicz TJ and Zinner E (eds) AIP, New York, p 3-26 Zinner EK, Gopel C (2002) Aluminium-26 in H4 chondrites implications for its production and its usefulness as a fine-scale chronometer for early solar system events. Meteorit Planet Sci 37 1001-1013 Zinner E, Amari S, Guitmess R, Nguyen A, Stadermann FJ, Walker RM, I wis RS (2003) Presolar spinel grains from the Murray and Murchison carbonaceous chondrites. Geochim Cosmochim Acta 67 5083-5095... [Pg.64]

Carlson RW, Hauri EH (2001) Extending the ° Pd- ° Ag chronometer to low Pd/Ag meteorites with multicollector plasma-ionization mass spectrometry. Geochim Cosmochim Acta 65 1839-1848 Clayton, RN, Onuma N, Mayeda TK (1976) Distribution of the presolar component in Allende and other carbonaceous chondrites. Earth Planet Sci Lett 30 10-18 Compston W, Oversby VM (1969) Lead isotopic analysis using a double spike. J Geophys Res 74 4338-4348 Criss RE (1999) Principles of Stable Isotope Distribution. University Press, Oxford... [Pg.147]

Copper in meteorites is depleted in the heavier 65 isotope with respeet to the Earth (Luek et al. 2003 Russell et al. 2003). Luck et al. s (2003) study of the four main groups of carbonaceous chondrites CI-CM-CO-CV showed that Cu depletion is maximum (-1.5%o) for the C V chondrites (e.g., Allende) for which the depletion of volatile elements is strongest, which indicates that volatilization does not accormt for the observed isotopic heterogeneity (Fig. 4). Luck et al. (2003) found that 8 Cu in CI-CM-CO classes correlates with O excess, but this does not seems to be the case for CV (Luck et al. 2003) nor for the CR, CB, and the particularly Cu-depleted CH-like classes (Russell et al. 2003). In contrast, chondritic Zn is relatively heavy with 8 Zn up to 1 %o (Luck et al. 2001). The rather high 5 Zn values of iron meteorites (up to 4%o)is reminiscent of a similar fractionation of Fe isotopes between metal and silicates (Zhu et al. 2002). [Pg.416]

Figure 4. Correlation between the excesses of of the different classes of meteorites, as measured by their A 0 and their 5 Cu values. The volatile-depleted carbonaceous chondrites (CV) show a deficit in the heavier isotope Cu, which led Luck et al. (2003) to suggest that the observed correlations result from a nucleosynthetic excess of Cu. Figure 4. Correlation between the excesses of of the different classes of meteorites, as measured by their A 0 and their 5 Cu values. The volatile-depleted carbonaceous chondrites (CV) show a deficit in the heavier isotope Cu, which led Luck et al. (2003) to suggest that the observed correlations result from a nucleosynthetic excess of Cu.
I Black smoker chalcopyrite, n=16 Carbonaceous chondrites and iron meteorites, n=20... [Pg.421]

EUer and Kitchen (2004) have re-evaluated the hydrogen isotope composition of water-rich carbonaceous chondrites by stepped-heating analysis of very small amounts of separated water-rich materials. Their special aim has been to deduce the origin of the water with which the meteorites have reacted. They observed a decrease in 5D with increasing extent of aqueous alteration from 0%c (least altered, most volatile rich) to —200%c (most altered, least volatile rich). [Pg.97]


See other pages where Carbonaceous chondrite meteorite is mentioned: [Pg.413]    [Pg.98]    [Pg.413]    [Pg.284]    [Pg.2497]    [Pg.57]    [Pg.413]    [Pg.98]    [Pg.413]    [Pg.284]    [Pg.2497]    [Pg.57]    [Pg.97]    [Pg.98]    [Pg.98]    [Pg.22]    [Pg.30]    [Pg.38]    [Pg.162]    [Pg.101]    [Pg.390]    [Pg.94]    [Pg.131]    [Pg.329]    [Pg.340]    [Pg.59]    [Pg.186]    [Pg.221]    [Pg.234]    [Pg.426]    [Pg.95]    [Pg.97]   
See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Carbonaceous

Carbonaceous chondrites

Carbonaceous meteorite

Chondrites

Chondritic meteorites

Chondritic meteorites chondrites

Meteorites chondrite

Meteoritic

Meteoritics

Murchison meteorite carbonaceous chondrite

© 2024 chempedia.info