Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metathesis Reactions Involving Carbene Complexes

Because in metathesis reactions with most catalyst systems a selectivity of nearly 100% is found, a carbene mechanism seems less likely. Banks and Bailey ( ) reported the formation of small quantities of C3-C6-alkenes, cyclopropane, and methylcyclopropane when ethene was passed over Mo(CO)6-A1203, which suggests reactions involving carbene complexes. However, similar results have not been reported elsewhere most probably the products found by Banks and Bailey were formed by side reactions, typical for their particular catalyst system. [Pg.151]

The skeletal rearrangements are cycloisomerization processes which involve carbon-carbon bond cleavage. These reactions have witnessed a tremendous development in the last decade, and this chemistry has been recently reviewed.283 This section will be devoted to 7T-Lewis acid-catalyzed processes and will not deal, for instance, with genuine enyne metathesis processes involving carbene complex-catalyzed processes pioneered by Katz284 and intensely used nowadays with Ru-based catalysts.285 By the catalysis of 7r-Lewis acids, all these reactions generally start with a metal-promoted electrophilic activation of the alkyne moiety, a process well known for organoplatinum... [Pg.336]

It is clear that a detailed mechanism for the metathesis reaction of alkenes cannot yet be given with certainty. In view of the fact that, for similar reactions which are formally cyclobutane-dialkene transformations, a nonconcerted reaction pathway has been demonstrated, a concerted fusion of two alkenes to form a cyclobutane complex and its decomposition in the same way with a change in the symmetry plane is less probable. On the basis of the information on the two other mechanisms to date, the mechanism involving a metallocyclic intermediate is more plausible than a mechanism involving carbene complexes. [Pg.151]

The preferred kinetic model for the metathesis of acyclic alkenes is a Langmuir type model, with a rate-determining reaction between two adsorbed (complexed) molecules. For the metathesis of cycloalkenes, the kinetic model of Calderon as depicted in Fig. 4 agrees well with the experimental results. A scheme involving carbene complexes (Fig. 5) is less likely, which is consistent with the conclusion drawn from mechanistic considerations (Section III). However, Calderon s model might also fit the experimental data in the case of acyclic alkenes. If, for instance, the concentration of the dialkene complex is independent of the concentration of free alkene, the reaction will be first order with respect to the alkene. This has in fact been observed (Section IV.C.2) but, within certain limits, a first-order relationship can also be obtained from many hyperbolic models. Moreover, it seems unreasonable to assume that one single kinetic model could represent the experimental results of all systems under consideration. Clearly, further experimental work is needed to arrive at more definite conclusions. Especially, it is necessary to investigate whether conclusions derived for a particular system are valid for all catalyst systems. [Pg.168]

A variety of experimental evidence showed results consistent with a non-pairwise mechanism involving carbene complexes and a metallacyclobutadiene intermediate. For example, in the Figure 14.28 reaction, the gaseous products H2C=CH2, D2C=CD2, and H2C=CD2 formed in the expected statistical ratio early in the reaction, with no indication that the mixed product H2C=CD2, the first product by the pairwise mechanism, forms before the others." The first direct demonstration that a carbene complex could engage in metathesis involved the carbene complex in Figure 14.29, which was able to replace its carbene ligand with a terminal alkene in a reaction consistent with the non-pairwise mechanism. ... [Pg.567]

The olefins that undergo metathesis include most simple and substituted olefins cycHc olefins give linear high molecular-weight polymers. The mechanism of the reaction is beheved to involve formation of carbene complexes that react via cycHc intermediates, ie, metaHacycles. Industrial olefin metathesis processes are carried out with soHd catalysts (30). [Pg.168]

Although olefin metathesis had soon after its discovery attracted considerable interest in industrial chemistry, polymer chemistry and, due to the fact that transition metal carbene species are involved, organometallic chemistry, the reaction was hardly used in organic synthesis for many years. This situation changed when the first structurally defined and stable carbene complexes with high activity in olefin metathesis reactions were described in the late 1980s and early 1990s. A selection of precatalysts discovered in this period and representative applications are summarized in Table 1. [Pg.226]

In scrutinizing the various proposed reaction sequences in Eq. (26), one may classify the behavior of carbene complexes toward olefins according to four intimately related considerations (a) relative reactivities of various types of olefins (b) the polar nature of the metal-carbene bond (c) the option of prior coordination of olefin to the transition metal, or direct interaction with the carbene carbon and (d) steric factors, including effects arising from ligands on the transition metal as well as substituents on the olefinic and carbene carbons. Information related to these various influences is by no means exhaustive at this point. Consequently, some apparent contradictions exist which seem to cast doubt on the relevance of various model compound studies to conventional catalysis of the metathesis reaction, a process which unfortunately involves species which elude direct structural determination. [Pg.461]

Another approach to synthetically useful olefin metathesis involves the utilization of higher homologues of titanium-methylidene 15, as shown in Scheme 14.11. If the resulting titanium carbene complex 20 is more stable than the starting alkylidene complex 15, this reaction can be employed for the generation of various titanocene-alkylidenes and as a method for the preparation of unsaturated compounds. [Pg.479]

When alkenes are allowed to react with certain catalysts (mostly tungsten and molybdenum complexes), they are converted to other alkenes in a reaction in which the substituents on the alkenes formally interchange. This interconversion is called metathesis 126>. For some time its mechanism was believed to involve a cyclobutane intermediate (Eq. (16)). Although this has since been proven wrong and found that the catalytic metathesis rather proceeds via metal carbene complexes and metallo-cyclobutanes as discrete intermediates, reactions of olefins forming cyclobutanes,... [Pg.137]

Cycloisomerization or metathesis also occurs, which can be understood as the formation of cyclobutene 326 by reductive elimination of 321. The metathesis product 327 is formed by isomerization of 326. The metatheses involving metal-carbene complexes are discussed in Section 7.2.6. They are closely related, but somewhat different from the metathesis explained here. Balance between the ene and the metathesis reactions seems to be delicate. [Pg.264]

These carbene (or alkylidene) complexes are used as either stoichiometric reagents or catalysts for various transformations which are different from those of free carbenes. Reactions involving the carbene complexes of W, Mo, Cr, Re, Ru, Rh, Pd, Ti and Zr are known. Carbene complexes undergo the following transformations (i) alkene metathesis (ii) alkene cyclopropanation (iii) carbonyl alkenation (iv) insertion to C—H, N—H and O—H bonds (v) ylide formation and (vi) dimerization. Their chemoselectivity depends mainly on the metal species and ligands, as discussed in the following sections. [Pg.305]

The term intramolecular enyne metathesis describes two types of processes. One involves a [2+2] cycloaddition of a multiple bond and a transition-metal carbene complex and the other is an oxidative cyclization catalyzed by low-valent transition-metal complexes, for example, Pt, Pd and Ru. The latter reaction is also called a skeletal reorganization. Both processes lead to similar products (Eq. 84). [Pg.230]

The synthesis of d° Alkylidene complexes by Schrock demonstrated that carbene complexes could be isolated that were electronically similar to those postulated to be involved in the alkene metathesis reaction see Schrock-type Carbene Complexes). Eventually, this pioneering work led to the synthesis of a class of compounds that are among the most active catalysts known for metathesis chemistry. The first observation that a d° carbene complex was involved in metathesis chemistry was when Tebbe showed that the Ti complex (2) would catalyze the degenerate metathesis of... [Pg.2683]

Olefin metathesis has emerged as a powerful tool for the preparation of cyclic organic compounds. Metathesis involves the redistribution of carbon-carbon double bonds in the presence of metal carbene complexes ([M]=CR2). The reaction of these metal carbenes with a,co-dienes leads to well-defined carbocyclic systems in what is termed ring-closing olefin metathesis (RCM). ... [Pg.433]

The understanding of the reaction mechanism is directly related to the role of the catalyst, i.e., the transition metal. It is universally accepted that olefin metathesis proceeds via the so-called metal carbene chain mechanism, first proposed by Herisson and Chauvin in 1971 [25]. The propagation reaction involves a transition metal carbene as the active species with a vacant coordination site at the transition metal. The olefin coordinates at this vacant site and subsequently a metalla-cyclobutane intermediate is formed. The metallacycle is unstable and cleaves in the opposite fashion to afford a new metal carbene complex and a new olefin. If this process is repeated often enough, eventually an equilibrium mixture of alkenes will be obtained. [Pg.333]


See other pages where Metathesis Reactions Involving Carbene Complexes is mentioned: [Pg.273]    [Pg.273]    [Pg.166]    [Pg.1088]    [Pg.514]    [Pg.1088]    [Pg.660]    [Pg.27]    [Pg.63]    [Pg.158]    [Pg.207]    [Pg.250]    [Pg.455]    [Pg.291]    [Pg.291]    [Pg.11]    [Pg.475]    [Pg.341]    [Pg.291]    [Pg.186]    [Pg.196]    [Pg.249]    [Pg.1598]    [Pg.486]    [Pg.306]    [Pg.403]    [Pg.242]    [Pg.274]    [Pg.251]    [Pg.6616]    [Pg.784]    [Pg.102]    [Pg.555]    [Pg.467]   


SEARCH



Carbene complexes metathesis

Carbene complexes reactions

Carbene reactions

Carbenes metathesis

Carbenes reactions

Metathesis reactions

Metathesis reactions complexes

Metathesis reactions reaction

© 2024 chempedia.info