Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metathesis reactions complexes

Complexes with /i -methylidenes are also known. Complex 2.41 in which methylidene and chloride bridges are present between titanium and aluminum is known as Tebbe s complex. Note that had we not known the structure, Tebbe s complex might have been formulated as Cp TiCCH ) plus Me AlCl. As will be seen, Tebbe s complex has relevance in alkene polymerization and metathesis reactions. Complex 2.42 is a unique example of a monometallic complex with a single carbon atom as one of the ligands. From the earlier examples it is clear that representative organometallic complexes with M-CR (n = 0-3) have all been isolated and fully characterized. [Pg.38]

With respect to the alkene metathesis reaction, complexes of the type [W(CHR)(0R)2X2.A1X3], which are excellent homogeneous catalysts in their own right, could be regarded as molecular models of the heterogeneous catalytic system. [Pg.15]

Sulfur imides with a single NR functionality, S5NR (6.12), SeNR (6.13) (R = Oct), " SgNH (6.14), ° and S9NH (6.15) ° are obtained by a methodology similar to that which has been used for the preparation of unstable sulfur allotropes, e.g., S9 and Sio. Eor example, the metathesis reaction between the bis(cyclopentadienyl)titanium complexes 6.8-6.10 and the appropriate dichlorosulfane yields 6.14 and 6.15 (Eq. 6.4). °... [Pg.116]

Metathesis reactions are sometimes the reverse of those in aqueous systems because of the differing solubility relations. For example because AgBr forms the complex ion [Ag(NH3)2]" " in liquid NH3 it is readily soluble, whereas BaBr2 is not, and can be precipitated ... [Pg.425]

The synthetic utility of the alkene metathesis reaction may in some cases be limited because of the formation of a mixture of products. The steps of the catalytic cycle are equilibrium processes, with the yields being determined by the thermodynamic equilibrium. The metathesis process generally tends to give complex mixtures of products. For example, pent-2-ene 8 disproportionates to give, at equilibrium, a statistical mixture of but-2-enes, pent-2-enes and hex-3-enes ... [Pg.12]

Next, if the metathesis reaction occurs in conformity with scheme (33), complex I should break up into a mixture of C2H4, C2H3D, and C2H2D2 ... [Pg.149]

It can be concluded from the study of Grubbs and Brunck that indeed a metal-carbon cr-complex might be the key intermediate in the metathesis reaction. For the conversion of I into II several reaction pathways can be... [Pg.149]

O Neill and Rooney 90) found that the Mo03-CoO-A1208 catalyst converts diazomethane into nitrogen and ethene under conditions where propene undergoes metathesis. However, because many catalysts are active for this conversion 91), their results cannot be considered as supporting the hypothesis that the metathesis reaction of alkenes proceeds via carbene complexes. [Pg.151]

Contradictory to a carbene mechanism is the high selectivity which is typical for the metathesis reaction. In the case of carbene complexes, side reactions must be expected, such as addition and insertion [Eqs. (38) and (39)] ... [Pg.151]

Because in metathesis reactions with most catalyst systems a selectivity of nearly 100% is found, a carbene mechanism seems less likely. Banks and Bailey ( ) reported the formation of small quantities of C3-C6-alkenes, cyclopropane, and methylcyclopropane when ethene was passed over Mo(CO)6-A1203, which suggests reactions involving carbene complexes. However, similar results have not been reported elsewhere most probably the products found by Banks and Bailey were formed by side reactions, typical for their particular catalyst system. [Pg.151]

It is clear that a detailed mechanism for the metathesis reaction of alkenes cannot yet be given with certainty. In view of the fact that, for similar reactions which are formally cyclobutane-dialkene transformations, a nonconcerted reaction pathway has been demonstrated, a concerted fusion of two alkenes to form a cyclobutane complex and its decomposition in the same way with a change in the symmetry plane is less probable. On the basis of the information on the two other mechanisms to date, the mechanism involving a metallocyclic intermediate is more plausible than a mechanism involving carbene complexes. [Pg.151]

Although olefin metathesis had soon after its discovery attracted considerable interest in industrial chemistry, polymer chemistry and, due to the fact that transition metal carbene species are involved, organometallic chemistry, the reaction was hardly used in organic synthesis for many years. This situation changed when the first structurally defined and stable carbene complexes with high activity in olefin metathesis reactions were described in the late 1980s and early 1990s. A selection of precatalysts discovered in this period and representative applications are summarized in Table 1. [Pg.226]

It has been demonstrated that group 6 Fischer-type metal carbene complexes can in principle undergo carbene transfer reactions in the presence of suitable transition metals [122]. It was therefore interesting to test the compatibility of ruthenium-based metathesis catalysts and electrophilic metal carbene functionalities. A series of examples of the formation of oxacyclic carbene complexes by metathesis (e.g., 128, 129, Scheme 26) was published by Dotz et al. [123]. These include substrates where double bonds conjugated to the pentacarbonyl metal moiety participate in the metathesis reaction. Evidence is... [Pg.259]

Hexacarbonyldicobalt complexes of alkynes have served as substrates in a variety of olefin metathesis reactions. There are several reasons for complex-ing an alkyne functionality prior to the metathesis step [ 125] (a) the alkyne may chelate the ruthenium center, leading to inhibition of the catalytically active species [125d] (b) the alkyne may participate in the metathesis reaction, giving undesired enyne metathesis products [125f] (c) the linear structure of the alkyne may prevent cyclization reactions due to steric reasons [125a-d] and (d) the hexacarbonylcobalt moiety can be used for further transformations [125c,f]. [Pg.260]

An obvious drawback in RCM-based synthesis of unsaturated macrocyclic natural compounds is the lack of control over the newly formed double bond. The products formed are usually obtained as mixture of ( /Z)-isomers with the (E)-isomer dominating in most cases. The best solution for this problem might be a sequence of RCAM followed by (E)- or (Z)-selective partial reduction. Until now, alkyne metathesis has remained in the shadow of alkene-based metathesis reactions. One of the reasons maybe the lack of commercially available catalysts for this type of reaction. When alkyne metathesis as a new synthetic tool was reviewed in early 1999 [184], there existed only a single report disclosed by Fiirstner s laboratory [185] on the RCAM-based conversion of functionalized diynes to triple-bonded 12- to 28-membered macrocycles with the concomitant expulsion of 2-butyne (cf Fig. 3a). These reactions were catalyzed by Schrock s tungsten-carbyne complex G. Since then, Furstner and coworkers have achieved a series of natural product syntheses, which seem to establish RCAM followed by partial reduction to (Z)- or (E)-cycloalkenes as a useful macrocyclization alternative to RCM. As work up to early 2000, including the development of alternative alkyne metathesis catalysts, is competently covered in Fiirstner s excellent review [2a], we will concentrate here only on the most recent natural product syntheses, which were all achieved by Fiirstner s team. [Pg.353]

A range of chloride metathesis reactions of the monomeric titanium N,N -bis(trimethylsilyl)benzamidinato-imido complexes have been described. These... [Pg.250]

The role of complexes 23-28 as catalyst precursors in the ring closing metathesis reactions was investigated. Three different diene substrates diethyldiallyl-malonate (29), diallyltosylamine (30). and dielhyldi(2-methylallyl)malonate (31) were added to the NMR tubes containing a solution of 5 mol% of catalyst precursor in an appropriate deuterated solvent. The NMR tubes were then kept at the temperatures reported in Table X. Product formation and diene disappearance were monitored by integrating the allylic methylene peaks in the H NMR spectra and the results are presented in Table X and the catalytic transformations are depicted in Scheme 3. [Pg.202]

Two principle strategies have been employed for the synthesis of siloxide-containing molecular precursors. The first involves a silanolysis, or condensation, reaction of the Si - OH groups with a metal amido, alkyl, hahde, or alkoxide complex. The second method involves salt metathesis reactions of an alkali metal siloxide with a metal hahde. Much of our work has been focused on formation of tris(tert-butoxy)siloxide derivatives of the early transition metals and main group elements. The largely imexplored regions of the periodic table include the lanthanides and later transition metals. [Pg.75]

An interesting way to control the stereoselectivity of metathesis-reactions is by intramolecular H-bonding between the chlorine ligands at the Ru-centre and an OH-moiety in the substrate [167]. With this concept and enantiomerically enriched allylic alcohols as substrates, the use of an achiral Ru-NHC complex can result in high diastereoselectivities like in the ROCM of 111-112 (Scheme 3.18). If non-H-bonding substrates are used, the selectivity not only decreases but proceeds in the opposite sense (product 113 and 114). [Pg.95]


See other pages where Metathesis reactions complexes is mentioned: [Pg.693]    [Pg.155]    [Pg.13]    [Pg.16]    [Pg.150]    [Pg.153]    [Pg.164]    [Pg.230]    [Pg.231]    [Pg.235]    [Pg.237]    [Pg.237]    [Pg.237]    [Pg.248]    [Pg.253]    [Pg.255]    [Pg.260]    [Pg.261]    [Pg.271]    [Pg.274]    [Pg.290]    [Pg.298]    [Pg.358]    [Pg.359]    [Pg.202]    [Pg.232]    [Pg.297]    [Pg.196]    [Pg.202]    [Pg.207]    [Pg.50]    [Pg.207]   
See also in sourсe #XX -- [ Pg.513 ]




SEARCH



Adduct complexes, metathesis reaction

Alkyne metathesis reaction complexes

Carbene Complexes from Olefin Metathesis Reactions

Metathesis Reactions Involving Carbene Complexes

Metathesis reactions

Metathesis reactions reaction

Metathesis reactions transition-metal complexes

Metathesis reactions, ring-closure carbene complexes

Titanium complexes ligand metathesis reactions

Titanium complexes metathesis reactions

Transition Metal-Carbene Complexes in Olefin Metathesis and Related Reactions

© 2024 chempedia.info