Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals oxidation-reduction reactions

Cyano metal complexes undergo a variety of oxidation-reduction reactions. One of the most studied is the fast self-exchange reaction of the [Fe(CN)4] /" anions information from this research was instrumental in establishing the outer-sphere mechanism (see Outer-sphere Reaction) for transition metal oxidation-reduction reactions (see Electrochemistry Applications in Inorganic Chemistry). The nature... [Pg.1046]

CaniZZaro Reaction. Both 2- and 4-hydroxybenzaldehydes undergo this self-oxidation—reduction reaction, but much less readily than benzaldehyde the reaction requires metal catalysts such as nickel, cobalt, or silver to yield the corresponding hydroxybenzoic acids and hydroxybenzyl alcohols (47—48). [Pg.505]

In electroless deposition, the substrate, prepared in the same manner as in electroplating (qv), is immersed in a solution containing the desired film components (see Electroless plating). The solutions generally used contain soluble nickel salts, hypophosphite, and organic compounds, and plating occurs by a spontaneous reduction of the metal ions by the hypophosphite at the substrate surface, which is presumed to catalyze the oxidation—reduction reaction. [Pg.391]

Refining Processes. AH the reduction processes yield an impure metal containing some of the minor elements present in the concentrate, eg, cadmium in 2inc, or some elements introduced during the smelting process, eg, carbon in pig iron. These impurities must be removed from the cmde metal in order to meet specifications for use. Refining operations may be classified according to the kind of phases involved in the process, ie, separation of a vapor from a Hquid or soHd, separation of a soHd from a Hquid, or transfer between two Hquid phases. In addition, they may be characterized by whether or not they involve oxidation—reduction reactions. [Pg.169]

Oxidation—Reduction. Redox or oxidation—reduction reactions are often governed by the hard—soft base rule. For example, a metal in a low oxidation state (relatively soft) can be oxidized more easily if surrounded by hard ligands or a hard solvent. Metals tend toward hard-acid behavior on oxidation. Redox rates are often limited by substitution rates of the reactant so that direct electron transfer can occur (16). If substitution is very slow, an outer sphere or tunneling reaction may occur. One-electron transfers are normally favored over multielectron processes, especially when three or more species must aggregate prior to reaction. However, oxidative addition... [Pg.170]

The reaction of an alkyl halide with lithium is an oxidation-reduction reaction. Group I metals are powerful reducing agents. [Pg.589]

Thus, Experiment 7 involved the same oxidation-reduction reaction but the electron transfer must have occurred locally between individual copper atoms (in the metal) and individual silver ions (in the solution near the metal surface). This local transfer replaces the wire middleman in the cell, which carries electrons from one beaker (where they are released by copper) to the other (where they are accepted by silver ions). [Pg.203]

In an electrochemical cell, electrical work is obtained from an oxidation-reduction reaction. For example, consider the process that occurs during the discharge of the lead storage battery (cell). Figure 9.3 shows a schematic drawing of this cell. One of the electrodes (anode)q is Pb metal and the other (cathode) is Pb02 coated on a conducting metal (Pb is usually used). The two electrodes are immersed in an aqueous sulfuric acid solution. [Pg.475]

Although the exact chemical mechanism for the direct oxide reduction reaction has not yet been fully characterized, it has been well established that the reaction goes to completion when excess calcium is present, sufficient CaCl2 is available to dissolve the CaO produced, and adequate stirring is used. As calcium metal is soluble to about 1 wt% in CaC12 at 835°C, excess Ca insures that the reaction is driven to completion by mass-action effects. [Pg.382]

A production process has evolved from this original work, and is presently used for extracting americium from kilogram amounts of plutonium metal. This process is based upon equilibrium partitioning (by oxidation-reduction reactions) of americium and plutonium between the molten chloride salt and the molten plutonium phase. The chemistry of this process is indicated by the following reactions ... [Pg.385]

For a number of applications curing at room temperature is desirable. This so-called cold cure is brought about by using a peroxy initiator in conjunction with some kind of activator substance. The peroxy compounds in these cases are substances such as methyl ethyl ketone peroxide and cyclohexanone peroxide, which as used in commercial systems tend not to be particularly pure, but instead are usually mixtures of peroxides and hydroperoxides corresponding in composition approximately to that of the respective nominal compounds. Activators are generally salts of metals capable of undergoing oxidation/reduction reactions very readily. A typical salt for this purpose is cobalt naphthenate, which undergoes the kind of reactions illustrated in Reactions 4.6 and 4.7. [Pg.60]

Seven chemical reactions were identified from the chemistry syllabus. These chemical reactions were selected because they were frequently encountered during the 2-year chemistiy course and based on their importance in understanding concepts associated with three topics, namely, acids, bases and salts, metal reactivity series and inorganic chemistry qualitative analysis. The seven types of chemical reactions were combustion of reactive metals in air, chemical reactions between dilute acids and reactive metals, neutralisation reactions between strong acids and strong alkalis, neutralisation reactions between dilute acids and metal oxides, chemical reactions between dilute acids and metal carbonates, ionic precipitation reactions and metal ion displacement reactions. Although two of the chemical reactions involved oxidation and reduction, it was decided not to include the concept of redox in this study as students had only recently been introduced to ion-electron... [Pg.155]

As described in Section 4-1. one important class of chemical reactions involves transfers of protons between chemical species. An equally important class of chemical reactions involves transfers of electrons between chemical species. These are oxidation-reduction reactions. Commonplace examples of oxidation-reduction reactions include the msting of iron, the digestion of food, and the burning of gasoline. Paper manufacture, the subject of our Box, employs oxidation-reduction chemishy to bleach wood pulp. All metals used in the chemical industry and manufacturing are extracted and purified through oxidation-reduction chemistry, and many biochemical pathways involve the transfer of electrons from one substance to another. [Pg.247]

Electron-transfer reactions occur all around us. Objects made of iron become coated with mst when they are exposed to moist air. Animals obtain energy from the reaction of carbohydrates with oxygen to form carbon dioxide and water. Turning on a flashlight generates a current of electricity from a chemical reaction in the batteries. In an aluminum refinery, huge quantities of electricity drive the conversion of aluminum oxide into aluminum metal. These different chemical processes share one common feature Each is an oxidation-reduction reaction, commonly called a redox reaction, in which electrons are transferred from one chemical species to another. [Pg.1351]

Oxidation-Reduction Reactions Between Complexes of Different Metals... [Pg.153]

Oxidation-Reduction Reactions between Covalent Compounds and Metal Ions... [Pg.274]

Silicon is generally considered to be a congener of carbon and this is also reflected in the evolution of silicon as a reducing agent for metal oxides. Silicon forms a fairly stable solid oxide silica or silicon dioxide (Si02) and also a stable gaseous oxide silicon monoxide (SiO), both of which can be useful in oxide reduction reactions. [Pg.377]

The nickel-chromium plating process includes the steps in which a ferrous base material is electroplated with nickel and chromium. The electroplating operations for plating the two metals are basically oxidation-reduction reactions. Typically, the part to be plated is the cathode, and the plating metal is the anode. [Pg.232]

Oxidation-reduction reactions may affect the mobility of metal ions by changing the oxidation state. The environmental factors of pH and Eh (oxidation-reduction potential) strongly affect all the processes discussed above. For example, the type and number of molecular and ionic species of metals change with a change in pH (see Figures 20.5-20.7). A number of metals and nonmetals (As, Be, Cr, Cu, Fe, Ni, Se, V, Zn) are more mobile under anaerobic conditions than aerobic conditions, all other factors being equal.104 Additionally, the high salinity of deep-well injection zones increases the complexity of the equilibrium chemistry of heavy metals.106... [Pg.820]

When you place a piece of zinc metal into a solution of CuS04, you expect a chemical reaction because the more active zinc displaces the less active copper from its compound (Sec. 7.3). We learned in Chap. 13 that this is an oxidation-reduction reaction, involving transfer of electrons from the zinc to the copper. [Pg.230]

Equilibrium considerations other than those of binding are those of oxidation/reduction potentials to which we drew attention in Section 1.14 considering the elements in the sea. Inside cells certain oxidation/reductions also equilibrate rapidly, especially those of transition metal ions with thiols and -S-S- bonds, while most non-metal oxidation/reduction changes between C/H/N/O compounds are slow and kinetically controlled (see Chapter 2). In the case of fast redox reactions oxidation/reduction potentials are fixed constants. [Pg.116]

Spiro [27] has derived quantitative expressions for the catalytic effect of electron conducting catalysts on oxidation-reduction reactions in solution in which the catalyst assumes the Emp imposed on it by the interacting redox couples. When both partial reaction polarization curves in the region of Emp exhibit Tafel type kinetics, he determined that the catalytic rate of reaction will be proportional to the concentrations of the two reactants raised to fractional powers in many simple cases, the power is one. On the other hand, if the polarization curve of one of the reactants shows diffusion-controlled kinetics, the catalytic rate of reaction will be proportional to the concentration of that reactant alone. Electroless metal deposition systems, at least those that appear to obey the MPT model, may be considered to be a special case of the general class of heterogeneously catalyzed reactions treated by Spiro. [Pg.230]

Three classes of polynuclear complexes containing metal-metal bonds possess emissive excited states that undergo oxidation-reduction reactions in solution the prototypes are Re2Cl T(dlt d lt),... [Pg.23]

Enthalpies, Entropies, and Gibb s Energies of Transition Metal Ion Oxidation-Reduction Reactions with Hydrogen Peroxide in Aqueous Solution (T = 298 K) [23]... [Pg.385]

J. Kochi, Oxidation-Reduction Reactions in Free Radicals and Metal Complexes in Free Radicals (Ed. J. Kochi), Vol. 1, Wiley, New York, 1973, pp. 591-683. [Pg.652]


See other pages where Metals oxidation-reduction reactions is mentioned: [Pg.6]    [Pg.297]    [Pg.237]    [Pg.306]    [Pg.103]    [Pg.382]    [Pg.113]    [Pg.249]    [Pg.25]    [Pg.262]    [Pg.244]    [Pg.384]    [Pg.65]    [Pg.68]    [Pg.69]    [Pg.172]    [Pg.180]    [Pg.166]    [Pg.406]    [Pg.340]    [Pg.248]    [Pg.371]   


SEARCH



Metal complexes—continued oxidation-reduction reactions

Metal oxide reactions

Metal oxide reduction electron-transfer reactions

Metals/metalloids reduction-oxidation reactions

Oxidation-reduction reactions between metal complexes

Oxidation-reduction reactions transition metals

Oxidation-reduction reactions within metal complexes

Reaction oxidation-reduction

Reactions of Metals with Nonmetals (Oxidation-Reduction)

© 2024 chempedia.info