Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal oxide reduction electron-transfer reactions

The silver-silver chloride electrode is an example of a metal electrode that participates as a member of a redox couple. The silver-silver chloride electrode consists of a silver wire or rod coated with AgCl(s) that is immersed in a chloride solution of constant activity this sets the half-cell potential. The Ag/AgCl electrode is itself considered a potentiometric electrode, as its phase boundary potential is governed by an oxidation-reduction electron transfer equilibrium reaction that occurs at the surface of the silver ... [Pg.95]

The SODs are ubiquitous metallo-enzymes in oxygen-tolerant organisms and protect the organism against the toxic effects of 02 by efficiently catalyzing its dismuta-tion into O2 and H2O2 via a cyclic oxidation-reduction electron transfer mechanism as shown in Scheme 1, with Cu, Zn-SOD with an example. Two steps have been proposed in the dismutation reaction, in which the oxidized form of the metal central ions (i.e. Cu (II), Fe(III), Mn(III) for Cu, Zn-SOD, Fe-SOD and Mn-SOD, respectively) were first reduced to the reduced form (i.e. Cu (I), Fe(II), Mn(ll) for Cu, Zn-SOD, Fe-SOD and Mn-SOD, respectively) with the formation of O2 followed by a subsequent equivalent oxidation of the reduced form of the metal ions into their oxidized form by 02 with the release of H2O2 (Scheme 6.1) [98]. [Pg.150]

Much of tills chapter concerns ET reactions in solution. However, gas phase ET processes are well known too. See figure C3.2.1. The Tiarjioon mechanism by which halogens oxidize alkali metals is fundamentally an electron transfer reaction [2]. One might guess, from tliis simple reaction, some of tlie stmctural parameters tliat control ET rates relative electron affinities of reactants, reactant separation distance, bond lengtli changes upon oxidation/reduction, vibrational frequencies, etc. [Pg.2972]

Another common type of reaction in aqueous solution involves a transfer of electrons between two species. Such a reaction is called an oxidation-reduction or redox reaction. Many familiar reactions fit into this category, including the reaction of metals with acid. [Pg.86]

Electron-transfer reactions occur all around us. Objects made of iron become coated with mst when they are exposed to moist air. Animals obtain energy from the reaction of carbohydrates with oxygen to form carbon dioxide and water. Turning on a flashlight generates a current of electricity from a chemical reaction in the batteries. In an aluminum refinery, huge quantities of electricity drive the conversion of aluminum oxide into aluminum metal. These different chemical processes share one common feature Each is an oxidation-reduction reaction, commonly called a redox reaction, in which electrons are transferred from one chemical species to another. [Pg.1351]

In contrast to superoxide, which participates in one-electron transfer reactions as a reductant, nitric oxide is apparently able to oxidize various transition metal-containing proteins and enzymes. The study of NO reaction with hemoglobin has been started many years ago when... [Pg.697]

Many reactions catalyzed by metalloenzymes involve electron transfer. On the simplest level, one can consider electron transfer reactions to be complementary when there are equal numbers of oxidants and reductants and the metals transfer equal numbers of electrons as shown in equation 1.25 ... [Pg.19]

The NO/NO+ and NO/NO- self-exchange rates are quite slow (42). Therefore, the kinetics of nitric oxide electron transfer reactions are strongly affected by transition metal complexes, particularly by those that are labile and redox active which can serve to promote these reactions. Although iron is the most important metal target for nitric oxide in mammalian biology, other metal centers might also react with NO. For example, both cobalt (in the form of cobalamin) (43,44) and copper (in the form of different types of copper proteins) (45) have been identified as potential NO targets. In addition, a substantial fraction of the bacterial nitrite reductases (which catalyze reduction of NO2 to NO) are copper enzymes (46). The interactions of NO with such metal centers continue to be rich for further exploration. [Pg.220]

Electron transfer reactions of metal ion complexes in homogeneous solution are understood in considerable detail, in part because spectroscopic methods and other techniques can be used to monitor reactant, intermediate, and product concentrations. Unfavorable characteristics of oxide/water interfaces often restrict or complicate the application of these techniques as a result, fewer direct measurements have been made at oxide/water interfaces. Available evidence indicates that metal ion complexes and metal oxide surface sites share many chemical characteristics, but differ in several important respects. These similarities and differences are used in the following discussions to construct a molecular description of reductive dissolution reactions. [Pg.451]

The majority of inorganic reactions can be placed into one of two broad classes (1) oxidation-reduction (redox) reactions including atom and electron transfer reactions and (2) substitution reactions. Terms such as inner sphere, outer sphere, and photo-related reactions are employed to describe redox reactions. Such reactions are important in the synthesis of polymers and monomers and in the use of metal-containing polymers as catalysts and in applications involving transfer of heat, electricity, and light. They will not be dealt with to any appreciable extent in this chapter. [Pg.362]

Bipyridyl (continued) as ligand, 12 135-1% catalysis, 12 157-159 electron-transfer reactions, 12 153-157 formation, dissociation, and racemization of complexes, 12 149-152 kinetic studies, 12 149-159 metal complexes with, in normal oxidation states, 12 175-189 nonmetal complexes with, 12 173-175 oxidation-reduction potentials, 12 144-147... [Pg.24]

A number of rate constants for reactions of transients derived from the reduction of metal ions and metal complexes were determined by pulse radiolysis [58]. Because of the shortlived character of atoms and oligomers, the determination of their redox potential is possible only by kinetic methods using pulse radiolysis. In the couple Mj/M , the reducing properties of M as electron donor as well as oxidizing properties of as electron acceptor are deduced from the occurrence of an electron transfer reaction with a reference reactant of known potential. These reactions obviously occur in competition with the cascade of coalescence processes. The unknown potential °(M /M ) is derived by comparing the action of several reference systems of different potentials. [Pg.585]

The catalytic effect of metal ions such as Mg2+ and Zn2+ on the reduction of carbonyl compounds has extensively been studied in connection with the involvement of metal ions in the oxidation-reduction reactions of nicotinamide coenzymes [144-149]. Acceleration effects of Mg2+ on hydride transfer from NADH model compounds to carbonyl compounds have been shown to be ascribed to the catalysis on the initial electron transfer process, which is the rate-determining step of the overall hydride transfer reactions [16,87,149]. The Mg2+ ion has also been shown to accelerate electron transfer from cis-dialkylcobalt(III) complexes to p-ben-zoquinone derivatives [150,151]. In this context, a remarkable catalytic effect of Mg2+ was also found on photoinduced electron transfer reactions from various electron donors to flavin analogs in 1984 [152], The Mg2+ (or Zn2+) ion forms complexes with a flavin analog la and 5-deazaflavins 2a-c with a 1 1 stoichiometry in dry MeCN at 298 K [153] ... [Pg.143]

As demonstrated in this review, photoinduced electron transfer reactions are accelerated by appropriate third components acting as catalysts when the products of electron transfer form complexes with the catalysts. Such catalysis on electron transfer processes is particularly important to control the redox reactions in which the photoinduced electron transfer processes are involved as the rate-determining steps followed by facile follow-up steps involving cleavage and formation of chemical bonds. Once the thermodynamic properties of the complexation of adds and metal ions are obtained, we can predict the kinetic formulation on the catalytic activity. We have recently found that various metal ions, in particular rare-earth metal ions, act as very effident catalysts in electron transfer reactions of carbonyl compounds [216]. When one thinks about only two-electron reduction of a substrate (A), the reduction and protonation give 9 spedes at different oxidation and protonation states, as shown in Scheme 29. Each species can... [Pg.163]

A single oxo bridge may subtend an angle between 140° and 180°, this angle being determined by steric or electronic factors (Table 3).95 103 Almost all these examples refer to the solid state, but there are also several homo- and hetero-nuclear M—O—M and M—O—M—O—M species known in solution. Often these are intermediates in, or products of, electron transfer reactions with oxide-bridging inner-sphere mechanisms. Examples include V—O—V in V(aq)2+ reduction of VO(aq)2+, and Act—O—Cr in Cr(aq)2+ reduction of UOj+ or PuOj+ a useful and extensive list of such species has been compiled. Tlie most recent examples are another V—O—V unit, this time from VO(aq)2+ and VOJ,105 and an all-actinide species containing neptunium(VI) and uranium-(VI).106 An example of a trinuclear anion of this type, with the metal in two oxidation states, is provided by (31).107... [Pg.301]

The theory of electron transfer in chemical and biological systems has been discussed by Marcus and many other workers 74 84). Recently, Larson 8l) has discussed the theory of electron transfer in protein and polymer-metal complex structures on the basis of a model first proposed by Marcus. In biological systems, electrons are mediated between redox centers over large distances (1.5 to 3.0 nm). Under non-adiabatic conditions, as the two energy surfaces have little interaction (Fig. 5), the electron transfer reaction does not occur. If there is weak interaction between the two surfaces, a, and a2, the system tends to split into two continuous energy surfaces, A3 and A2, with a small gap A which corresponds to the electronic coupling matrix element. Under such conditions, electron transfer from reductant to oxidant may occur, with the probability (x) given by Eq. (10),... [Pg.123]

An electronic excited state of a metal complex is both a stronger reductant and oxidant than the ground state. Therefore, complexes with relatively long-lived excited states can participate in inter-molecular electron transfer reactions that are uphill for the corresponding ground state species. Such excited state electron transfer reactions often play key roles in multistep schemes for the conversion of light to chemical energy ( 1). [Pg.166]

The rate-controlling step in reductive dissolution of oxides is surface chemical reaction control. The dissolution process involves a series of ligand-substitution and electron-transfer reactions. Two general mechanisms for electron transfer between metal ion complexes and organic compounds have been proposed (Stone, 1986) inner-sphere and outer-sphere. Both mechanisms involve the formation of a precursor complex, electron transfer with the complex, and subsequent breakdown of the successor complex (Stone, 1986). In the inner-sphere mechanism, the reductant... [Pg.164]


See other pages where Metal oxide reduction electron-transfer reactions is mentioned: [Pg.472]    [Pg.505]    [Pg.173]    [Pg.143]    [Pg.77]    [Pg.239]    [Pg.61]    [Pg.22]    [Pg.301]    [Pg.220]    [Pg.428]    [Pg.447]    [Pg.448]    [Pg.42]    [Pg.18]    [Pg.260]    [Pg.333]    [Pg.454]    [Pg.389]    [Pg.150]    [Pg.357]    [Pg.264]    [Pg.130]    [Pg.831]    [Pg.391]    [Pg.179]    [Pg.496]    [Pg.143]    [Pg.374]    [Pg.129]    [Pg.165]    [Pg.172]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Electron Oxidants

Electron reductions

Electron transfer metal reduction

Electron transfer metalation

Electron transfer, oxides

Electronic oxidation reactions

Electronic oxides

Electrons oxidation

Electrons oxidation-reduction reactions

Metal electron transfer

Metal electron transfer reactions

Metal oxide reactions

Metal oxide transfer

Metal transfer

Metals oxidation-reduction reactions

Oxidants reduction, electron transfer

Oxidation transfer

Oxidation-reduction electron transfer

Oxidation-reduction reactions electron transfer

Oxidative electron transfer

Oxidative transfer reactions

Reaction oxidation-reduction

Reduction transfer

Reductive electron transfer

© 2024 chempedia.info