Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ideal Metal

Metals Ideally, conduction electrons can move with no restoring force, that is, kh = 0. The electric field acts to accelerate the charges and, most important, to work against some general drag so that m and bd are still finite. The form of response is then... [Pg.254]

Figure 4 shows metal uptakes as a function of sorption time at 1173 K. No additional metal uptakes were found after about 60 hr. Of the three metal vapors, cesium exhibited the largest equilibrium uptake. In addition to capturing the metal, ideal sorbents would retain metal species in the sorbent matrices when they are disposed of. The results of the... [Pg.561]

The Metrohm 676 COD sample changer Is based on the standard procedure for measurement of the amount of K2Cr2C>7 required to oxidize the oxidlzable matter present in 1 L of water, so that the water sample is treated with excess Cr(VI) in a concentrated sulphuric acid medium containing Ag2SO as catalyst and heated at 175 C. The excess of Cr(VI) is determined by back-titration with Fe(II). The end-point is detected potentiometricaily by means of a metal —ideally gold— electrode. The titrated solution Is removed by suction and the titration vessel is washed with distilled water to make It ready for a new sample from the sampler, capable of holding up to sixteen pretreated samples. [Pg.485]

Several properties of tantalum, such as malleability, light weight, strength, and relative biological inertness, make the metal ideal for surgical purposes. Flexible tantalum stents are used in a variety of surgical... [Pg.1089]

Due to characteristic surface properties, PP is a very difficult material to metallize. Ideal for that pnirpose is the magnetron sputtering method described in papers (Ziaja Jaroszewski, 2011 Ziaja et al., 2010 Ziaja et al., 2008). Obtained coefficients of shielding effectiveness (SE) of popular composites based on PP/Me matrixes exceed up to 60dB (Me=Zn SE exceeds 60 dB, Me=Cu SE approx. 35 dB, Ti approx. 30 dB). [Pg.318]

AD-94 Nominally 94% AI2O3. A very good alumina ceramic for metallizing ideal for all but the most critical electrical and mechanical applications. [Pg.88]

Another important accomplislnnent of the free electron model concerns tire heat capacity of a metal. At low temperatures, the heat capacity of a metal goes linearly with the temperature and vanishes at absolute zero. This behaviour is in contrast with classical statistical mechanics. According to classical theories, the equipartition theory predicts that a free particle should have a heat capacity of where is the Boltzmann constant. An ideal gas has a heat capacity consistent with tliis value. The electrical conductivity of a metal suggests that the conduction electrons behave like free particles and might also have a heat capacity of 3/fg,... [Pg.128]

In this chapter, the foundations of equilibrium statistical mechanics are introduced and applied to ideal and weakly interacting systems. The coimection between statistical mechanics and thennodynamics is made by introducing ensemble methods. The role of mechanics, both quantum and classical, is described. In particular, the concept and use of the density of states is utilized. Applications are made to ideal quantum and classical gases, ideal gas of diatomic molecules, photons and the black body radiation, phonons in a hannonic solid, conduction electrons in metals and the Bose—Einstein condensation. Introductory aspects of the density... [Pg.435]

Clusters are intennediates bridging the properties of the atoms and the bulk. They can be viewed as novel molecules, but different from ordinary molecules, in that they can have various compositions and multiple shapes. Bare clusters are usually quite reactive and unstable against aggregation and have to be studied in vacuum or inert matrices. Interest in clusters comes from a wide range of fields. Clusters are used as models to investigate surface and bulk properties [2]. Since most catalysts are dispersed metal particles [3], isolated clusters provide ideal systems to understand catalytic mechanisms. The versatility of their shapes and compositions make clusters novel molecular systems to extend our concept of chemical bonding, stmcture and dynamics. Stable clusters or passivated clusters can be used as building blocks for new materials or new electronic devices [4] and this aspect has now led to a whole new direction of research into nanoparticles and quantum dots (see chapter C2.17). As the size of electronic devices approaches ever smaller dimensions [5], the new chemical and physical properties of clusters will be relevant to the future of the electronics industry. [Pg.2388]

The microscopic understanding of tire chemical reactivity of surfaces is of fundamental interest in chemical physics and important for heterogeneous catalysis. Cluster science provides a new approach for tire study of tire microscopic mechanisms of surface chemical reactivity [48]. Surfaces of small clusters possess a very rich variation of chemisoriDtion sites and are ideal models for bulk surfaces. Chemical reactivity of many transition-metal clusters has been investigated [49]. Transition-metal clusters are produced using laser vaporization, and tire chemical reactivity studies are carried out typically in a flow tube reactor in which tire clusters interact witli a reactant gas at a given temperature and pressure for a fixed period of time. Reaction products are measured at various pressures or temperatures and reaction rates are derived. It has been found tliat tire reactivity of small transition-metal clusters witli simple molecules such as H2 and NH can vary dramatically witli cluster size and stmcture [48, 49, M and 52]. [Pg.2393]

In tenns of an electrochemical treatment, passivation of a surface represents a significant deviation from ideal electrode behaviour. As mentioned above, for a metal immersed in an electrolyte, the conditions can be such as predicted by the Pourbaix diagram that fonnation of a second-phase film—usually an insoluble surface oxide film—is favoured compared with dissolution (solvation) of the oxidized anion. Depending on the quality of the oxide film, the fonnation of a surface layer can retard further dissolution and virtually stop it after some time. Such surface layers are called passive films. This type of film provides the comparably high chemical stability of many important constmction materials such as aluminium or stainless steels. [Pg.2722]

As outlined above, electron transfer through the passive film can also be cmcial for passivation and thus for the corrosion behaviour of a metal. Therefore, interest has grown in studies of the electronic properties of passive films. Many passive films are of a semiconductive nature [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102 and 1031 and therefore can be investigated with teclmiques borrowed from semiconductor electrochemistry—most typically photoelectrochemistry and capacitance measurements of the Mott-Schottky type [104]. Generally it is found that many passive films cannot be described as ideal but rather as amorjDhous or highly defective semiconductors which often exlribit doping levels close to degeneracy [105]. [Pg.2726]

The full quantum mechanical study of nuclear dynamics in molecules has received considerable attention in recent years. An important example of such developments is the work carried out on the prototypical systems H3 [1-5] and its isotopic variant HD2 [5-8], Li3 [9-12], Na3 [13,14], and HO2 [15-18], In particular, for the alkali metal trimers, the possibility of a conical intersection between the two lowest doublet potential energy surfaces introduces a complication that makes their theoretical study fairly challenging. Thus, alkali metal trimers have recently emerged as ideal systems to study molecular vibronic dynamics, especially the so-called geometric phase (GP) effect [13,19,20] (often referred to as the molecular Aharonov-Bohm effect [19] or Berry s phase effect [21]) for further discussion on this topic see [22-25], and references cited therein. The same features also turn out to be present in the case of HO2, and their exact treatment assumes even further complexity [18],... [Pg.552]

This program is excellent for high-accuracy and sophisticated ah initio calculations. It is ideal for technically difficult problems, such as electronic excited states, open-shell systems, transition metals, and relativistic corrections. It is a good program if the user is willing to learn to use the more sophisticated ah initio techniques. [Pg.339]

A constant force is applied to an ideal elastomer, assumed to be a perfect network. At an initial temperature Tj the length of the sample is Ij. The temperature is raised to Tf and the final length is If. Which is larger Ij or If (remember F is a constant and Tf > Tj) Suppose a wheel were constructed with spokes of this same elastomer. From the viewpoint of an observer, the spokes are heated near the 3 o clock position-say, by exposure to sunlight-while other spokes are shaded. Assuming the torque produced can overcome any friction at the axle, would the observer see the wheel turn clockwise or counterclockwise How would this experiment contrast, in magnitude and direction, with an experiment using metal spokes ... [Pg.193]

Because of its small size and portabiHty, the hot-wire anemometer is ideally suited to measure gas velocities either continuously or on a troubleshooting basis in systems where excess pressure drop cannot be tolerated. Furnaces, smokestacks, electrostatic precipitators, and air ducts are typical areas of appHcation. Its fast response to velocity or temperature fluctuations in the surrounding gas makes it particularly useful in studying the turbulence characteristics and rapidity of mixing in gas streams. The constant current mode of operation has a wide frequency response and relatively lower noise level, provided a sufficiently small wire can be used. Where a more mgged wire is required, the constant temperature mode is employed because of its insensitivity to sensor heat capacity. In Hquids, hot-film sensors are employed instead of wires. The sensor consists of a thin metallic film mounted on the surface of a thermally and electrically insulated probe. [Pg.110]

Heat pipes are used to perform several important heat-transfer roles ia the chemical and closely aUied iadustries. Examples iaclude heat recovery, the isothermaliziag of processes, and spot cooling ia the mol ding of plastics. In its simplest form the heat pipe possesses the property of extremely high thermal conductance, often several hundred times that of metals. As a result, the heat pipe can produce nearly isothermal conditions making an almost ideal heat-transfer element. In another form the heat pipe can provide positive, rapid, and precise control of temperature under conditions that vary with respect to time. [Pg.511]

Departures from the ideal behavior expressed by equation 7 usually are found in alkaline solutions containing alkaH metal ions in appreciable concentration, and often in solutions of strong acids. The supposition that the alkaline error is associated with the development of an imperfect response to alkaH metal ions is substantiated by the successhil design of cation-sensitive electrodes that are used to determine sodium, silver, and other monovalent cations (3). [Pg.466]

The most significant commercial product is barium titanate, BaTiO, used to produce the ceramic capacitors found in almost all electronic products. As electronic circuitry has been rniniaturized, demand has increased for capacitors that can store a high amount of charge in a relatively small volume. This demand led to the development of highly efficient multilayer ceramic capacitors. In these devices, several layers of ceramic, from 25—50 ]lni in thickness, are separated by even thinner layers of electrode metal. Each layer must be dense, free of pin-holes and flaws, and ideally consist of several uniform grains of fired ceramic. Manufacturers are trying to reduce the layer thickness to 10—12 ]lni. Conventionally prepared ceramic powders cannot meet the rigorous demands of these appHcations, therefore an emphasis has been placed on production of advanced powders by hydrothermal synthesis and other methods. [Pg.500]

Enolate Initiators. In principle, ester enolate anions should represent the ideal initiators for anionic polymeri2ation of alkyl methacrylates. Although general procedures have been developed for the preparation of a variety of alkaU metal enolate salts, many of these compounds are unstable except at low temperatures (67,102,103). Usehil initiating systems for acrylate polymeri2ation have been prepared from complexes of ester enolates with alkak metal alkoxides (104,105). [Pg.240]


See other pages where Ideal Metal is mentioned: [Pg.447]    [Pg.448]    [Pg.15]    [Pg.123]    [Pg.176]    [Pg.147]    [Pg.327]    [Pg.152]    [Pg.244]    [Pg.49]    [Pg.699]    [Pg.118]    [Pg.447]    [Pg.448]    [Pg.15]    [Pg.123]    [Pg.176]    [Pg.147]    [Pg.327]    [Pg.152]    [Pg.244]    [Pg.49]    [Pg.699]    [Pg.118]    [Pg.24]    [Pg.529]    [Pg.429]    [Pg.429]    [Pg.1758]    [Pg.1828]    [Pg.2902]    [Pg.111]    [Pg.524]    [Pg.491]    [Pg.400]    [Pg.514]    [Pg.279]    [Pg.328]    [Pg.331]    [Pg.460]    [Pg.475]    [Pg.516]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Ideal electrolyte lithium metal rechargeable batteries

Ideal metal-ligand bond length

Ideal polarizable metal-solution

Ideal polarizable metal-solution processes

Metal semiconductor ideal contact

Transition metal clusters and idealized polyhedra

© 2024 chempedia.info