Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal chemical properties

Berzelius in 1817 investigated the stoichiometrical relations of arsenic with other elements and examined the various compounds with sulphur. The physical properties of the element caused it to be classed with the metals, but its non-metallic chemical properties and its similarity in chemical behaviour to nitrogen and phosphorus were gradually recognised. [Pg.25]

The term metalloid was introduced by Erman and Simon in 1802 to indicate such elements as possess metallic physical properties, but non-metallic chemical properties. These include boron, silicon, arsenic, antimony, selenium and tellurium. Sometimes iodine is added to the list. Unfortunately in 1811 Berzelius employed the term metalloid as synonymous with non-metal and at the present time the French still adhere to its use in that sense. In the present chapter we shall deal with boron and silicon only. [Pg.68]

The metal is produced on a massive scale by the Hall-Heroult method in which alumina, a non-electrolyte, is dissolved in molten cryolite and electrolyzed. The bauxite contains iron, which would contaminate the product, so the bauxite is dissolved in hot alkali, the iron oxide is removed by filtration, and the pure alumina then precipitated by acidification. Molten aluminum is tapped off from the base of the cell and oxygen evolved at the anode. The aluminum atom is much bigger than boron (the first member of group 3) and its ionization potential is not particularly high. Consequently aluminum forms positive ions AP. However, it also has non-metallic chemical properties. Thus, it is amphoteric and also has a number of covalently bonded compounds. [Pg.13]

Most of the elements are metals. Their general location in the periodic table is toward the left and bottom, as seen in the shading of the periodic table in Figure 2.14. Metals share a number of similarities in chemical and physical properties. Physically, metals are shiny, malleable, and ductile (meaning they can be pulled into wires). They also conduct electricity, so wires are always made from metals. Chemical properties can also be used to distinguish metals. Metallic elements tend to form cations in most of their compounds, for example. [Pg.57]

Another method by which metals can be protected from corrosion is called alloying. An alloy is a multicomponent solid solution whose physical and chemical properties can be tailored by varying the alloy composition. [Pg.923]

Another example of epitaxy is tin growdi on the (100) surfaces of InSb or CdTe a = 6.49 A) [14]. At room temperature, elemental tin is metallic and adopts a bet crystal structure ( white tin ) with a lattice constant of 5.83 A. However, upon deposition on either of the two above-mentioned surfaces, tin is transfonned into the diamond structure ( grey tin ) with a = 6.49 A and essentially no misfit at the interface. Furtliennore, since grey tin is a semiconductor, then a novel heterojunction material can be fabricated. It is evident that epitaxial growth can be exploited to synthesize materials with novel physical and chemical properties. [Pg.927]

Among the metals, for example, sodium and potassium are similar to each other and form similar compounds. Copper and iron are also metals having similar chemical properties but these metals are clearly different from sodium and potassium—the latter being soft metals forming mainly colourless compounds, whilst copper and iron are hard metals and form mainly coloured compounds. [Pg.1]

Among the non-metals, nitrogen and chlorine, for example, are gases, but phosphorus, which resembles nitrogen chemically, is a solid, as is iodine which chemically resembles chlorine. Clearly we have to consider the physical and chemical properties of the elements and their compounds if we are to establish a meaningful classification. [Pg.1]

What are the principal differences in physical and chemical properties between any one metal from Group I and any one metal from Group IV and any one transition metal How far can you explain these differences in terms of their different atomic structures ... [Pg.61]

Metal salts of A-4-thiazoline-2-thione are used in the rubber industry Zn salts (123, 152), Pb and Mg salts (54). Cd salts (151, 324), Cu salts (325), in photographic processes (146). and in analysis (328). Zn, Ni, Co and Cd salts are used as germicides (329). Despite their wide range of application, little is known about their physical and chemical properties. [Pg.412]

Now that we know something about EDTA s chemical properties, we are ready to evaluate its utility as a titrant for the analysis of metal ions. To do so we need to know the shape of a complexometric EDTA titration curve. In Section 9B we saw that an acid-base titration curve shows the change in pH following the addition of titrant. The analogous result for a titration with EDTA shows the change in pM, where M is the metal ion, as a function of the volume of EDTA. In this section we learn how to calculate the titration curve. We then show how to quickly sketch the titration curve using a minimum number of calculations. [Pg.317]

AWS) has issued specifications covering the various filler-metal systems and processes (2), eg, AWS A5.28 which appHes to low alloy steel filler metals for gas-shielded arc welding. A typical specification covers classification of relevant filler metals, chemical composition, mechanical properties, testing procedures, and matters related to manufacture, eg, packaging, identification, and dimensional tolerances. New specifications are issued occasionally, in addition to ca 30 estabUshed specifications. Filler-metal specifications are also issued by the ASME and the Department of Defense (DOD). These specifications are usually similar to the AWS specification, but should be specifically consulted where they apply. [Pg.348]

Chemical Properties. In addition to the reactions Hsted in Table 3, boron trifluoride reacts with alkali or alkaline-earth metal oxides, as well as other inorganic alkaline materials, at 450°C to yield the trimer trifluoroboroxine [13703-95-2] (BOF), MBF, and MF (29) where M is a univalent metal ion. The trimer is stable below — 135°C but disproportionates to B2O2 and BF at higher temperatures (30). [Pg.160]

The physical and chemical properties are less well known for transition metals than for the alkaU metal fluoroborates (Table 4). Most transition-metal fluoroborates are strongly hydrated coordination compounds and are difficult to dry without decomposition. Decomposition frequently occurs during the concentration of solutions for crysta11i2ation. The stabiUty of the metal fluorides accentuates this problem. Loss of HF because of hydrolysis makes the reaction proceed even more rapidly. Even with low temperature vacuum drying to partially solve the decomposition, the dry salt readily absorbs water. The crystalline soflds are generally soluble in water, alcohols, and ketones but only poorly soluble in hydrocarbons and halocarbons. [Pg.167]

As a result of the development of electronic applications for NF, higher purities of NF have been required, and considerable work has been done to improve the existing manufacturing and purification processes (29). N2F2 is removed by pyrolysis over heated metal (30) or metal fluoride (31). This purification step is carried out at temperatures between 200—300°C which is below the temperature at which NF is converted to N2F4. Moisture, N2O, and CO2 are removed by adsorption on 2eohtes (29,32). The removal of CF from NF, a particularly difficult separation owing to the similar physical and chemical properties of these two compounds, has been described (33,34). [Pg.217]

Chemical Properties. A combination of excellent chemical and mechanical properties at elevated temperatures result in high performance service in the chemical processing industry. Teflon PEA resins have been exposed to a variety of organic and inorganic compounds commonly encountered in chemical service (26). They are not attacked by inorganic acids, bases, halogens, metal salt solutions, organic acids, and anhydrides. Aromatic and ahphatic hydrocarbons, alcohols, aldehydes, ketones, ethers, amines, esters, chlorinated compounds, and other polymer solvents have Httle effect. However, like other perfluorinated polymers,they react with alkah metals and elemental fluorine. [Pg.375]

Hafnium [7440-58-6] Hf, is in Group 4 (IVB) of the Periodic Table as are the lighter elements zirconium and titanium. Hafnium is a heavy gray-white metallic element never found free in nature. It is always found associated with the more plentiful zirconium. The two elements are almost identical in chemical behavior. This close similarity in chemical properties is related to the configuration of the valence electrons, and for zirconium and... [Pg.439]

Hafnium tetrabromide [13777-22-5], HfBr, is very similar to the tetrachloride in both its physical and chemical properties. Hafnium tetraiodide [13777-23-6], Hfl, is produced by reaction of iodine with hafnium metal at 300°C or higher. At temperatures above 1200°C, the iodide dissociates to hafnium metal and iodine. These two reactions are the basis for the iodide-bar refining process. Hafnium iodide is reported to have three stable crystalline forms at 263—405°C (60). [Pg.445]

AppHcations for electroplated indium coatings include indium bump bonding for shicon semiconductor die attachment to packaging substrates and miscehaneous appHcations where the physical or chemical properties of indium metal are desired as a plated deposit. [Pg.80]

Usually, the ore or concentrate cannot be reduced to the metal in a single operation. An additional preparation process is needed to modify the physical or chemical properties of the raw material prior to its reduction. Furthermore, most pyrometaHurgical reductions do not yield a pure metal and an additional step, refining, is needed to achieve the chemical purity that is specified for the commercial use of the metal. [Pg.164]

Chemical Properties. Molybdenum has good resistance to chemical attack by mineral acids, provided that oxidizing agents ate not present. The metal also offers excellent resistance to attack by several liquid metals. The approximate temperature limits for molybdenum to be considered for long-time service while in contact with various metals in the hquid state ate as follows ... [Pg.465]

Chemical Properties. LLDPE is chemically stable. Very few analyses and tests related to its chemical properties are carried out routinely. Resistance to thermal stress-cracking is determined by exposing film wrapped on a metal mandrel to hot (100°C) air for 48, 96, and 168 hours (ASTM D2951-71). [Pg.404]

Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

Preparation and Properties of Organophosphines. AUphatic phosphines can be gases, volatile Hquids, or oils. Aromatic phosphines frequentiy are crystalline, although many are oils. Some physical properties are Hsted in Table 14. The most characteristic chemical properties of phosphines include their susceptabiUty to oxidation and their nucleophilicity. The most common derivatives of the phosphines include halophosphines, phosphine oxides, metal complexes of phosphines, and phosphonium salts. Phosphines are also raw materials in the preparation of derivatives, ie, derivatives of the isomers phosphinic acid, HP(OH)2, and phosphonous acid, H2P(=0)0H. [Pg.378]


See other pages where Metal chemical properties is mentioned: [Pg.256]    [Pg.926]    [Pg.2388]    [Pg.2422]    [Pg.17]    [Pg.25]    [Pg.205]    [Pg.361]    [Pg.154]    [Pg.443]    [Pg.216]    [Pg.257]    [Pg.115]    [Pg.456]    [Pg.390]    [Pg.437]    [Pg.540]    [Pg.188]    [Pg.394]    [Pg.395]    [Pg.411]    [Pg.390]    [Pg.103]   
See also in sourсe #XX -- [ Pg.568 ]

See also in sourсe #XX -- [ Pg.410 ]

See also in sourсe #XX -- [ Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.58 ]




SEARCH



© 2024 chempedia.info