Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals, activated compounds

Whatever application route is envivioned for the liposomal drugs, according to. Ref. 409 the following quality control assays should be applied to liposomal formulations for use in humans (1) Basic characterization assays pH osmolarity trapped volume phospholipid concentration phospholipid composition phospholipid acyl chain composition cholesterol concentration active compound concentration residual organic solvents and heavy metals active compound/phospholipid ratio proton or ion gradient before and after remote loading (2) Chemical... [Pg.351]

Recent publications indicate the cloud-point extraction by phases of nonionic surfactant as an effective procedure for preconcentrating and separation of metal ions, organic pollutants and biologically active compounds. The effectiveness of the cloud-point extraction is due to its high selectivity and the possibility to obtain high coefficients of absolute preconcentrating while analyzing small volumes of the sample. Besides, the cloud-point extraction with non-ionic surfactants insures the low-cost, simple and accurate analytic procedures. [Pg.50]

In tire transition-metal monocarbides, such as TiCi j , the metal-rich compound has a large fraction of vacairt octahedral interstitial sites and the diffusion jump for carbon atoms is tlrerefore similar to tlrat for the dilute solution of carbon in the metal. The diffusion coefficient of carbon in the monocarbide shows a relatively constairt activation energy but a decreasing value of the pre-exponential... [Pg.183]

Although estrone and estradiol (26) have both been isolated from human urine, it has recently been shown that it is the latter that is the active compound that binds to the so-called estrogen receptor protein. Reduction of estrone with any of a large number of reducing agents (for example, any of the complex metal hydrides) leads cleanly to estradiol. This high degree of stereoselectivity to afford the product of attack at the alpha side of the molecule is characteristic of many reactions of steroids. [Pg.161]

Metal deactivators (MD) act, primarily, by retarding metal-catalyzed oxidation of polymers they are, therefore, important under conditions where polymers are in contact with metals, e.g., wires and power cables. Metal deactivators are normally polyfunctional metal chelating compounds (e.g.. Table la, AO 19-22) that can chelate with metals and decrease their catalytic activity [21]. [Pg.109]

In a catalytic asymmetric reaction, a small amount of an enantio-merically pure catalyst, either an enzyme or a synthetic, soluble transition metal complex, is used to produce large quantities of an optically active compound from a precursor that may be chiral or achiral. In recent years, synthetic chemists have developed numerous catalytic asymmetric reaction processes that transform prochiral substrates into chiral products with impressive margins of enantio-selectivity, feats that were once the exclusive domain of enzymes.56 These developments have had an enormous impact on academic and industrial organic synthesis. In the pharmaceutical industry, where there is a great emphasis on the production of enantiomeri-cally pure compounds, effective catalytic asymmetric reactions are particularly valuable because one molecule of an enantiomerically pure catalyst can, in principle, direct the stereoselective formation of millions of chiral product molecules. Such reactions are thus highly productive and economical, and, when applicable, they make the wasteful practice of racemate resolution obsolete. [Pg.344]

Examples of the Activity of the Catalyst Formed by the Reaction of Transition Metal Organometallic Compounds with Oxide Supports during Ethylene Polymerisation... [Pg.188]

Many pharmacologically active compounds have been synthesized using 5-bromoisoquinoline or 5-bromo-8-nitroisoquinoline as building blocks.6 7 8 9 10 11 The haloaromatics participate in transition-metal couplings 81012 and Grignard reactions. The readily reduced nitro group of 5-bromo-8-nitroisoquinoline provides access to an aromatic amine, one of the most versatile functional groups. In addition to N-alkylation, TV-acylation and diazotiation, the amine may be utilized to direct electrophiles into the orthoposition. [Pg.52]

The yielded product can be converted to a surface-active compound if at least one ester group has been transformed to the free acid or an alkali metal salt thereof [160]. There are also many compounds from phosphinic acid derivatives claimed to be useful as sequestrants and builders to improve detergency, especially bisphosphonylmethylphosphinic acids and polyphosphinic acids [structures (9) and (10)], respectively ... [Pg.585]

Many organometallic compounds are best prepared by this reaction, which involves replacement of a metal in an organometallic compound by another metal. The compound RM can be successfully prepared only when M is above M in the electromotive series, unless some other way is found to shift the equilibrium. That is, RM is usually an unreactive compound and M is a metal more active than M. Most often, RM is R2Hg, since mercury alkyls are easy to prepare and mercury is far down in the electromotive series." Alkyls of Li, Na, K, Be, Mg, Al, Ga, Zn, Cd, Te, Sn, and so on have been prepared this way. An important advantage of this method over 12-36 is that it ensures that the organometallic compound will be prepared free of any possible halide. This method can be used for the isolation of solid sodium and potassium alkyls." If the metals lie too close together in the series, it may not be... [Pg.802]

Metal deactivators—Organic compounds capable of forming coordination complexes with metals are known to be useful in inhibiting metal-activated oxidation. These compounds have multiple coordination sites and are capable of forming cyclic strucmres, which cage the pro-oxidant metal ions. EDTA and its various salts are examples of this type of metal chelating compounds. [Pg.467]

Perhaps the most important chemical property of these complexes is their potential as catalysts, particularly of the early transition metal isoleptic compounds for a-olefin polymerization. This arises because unlike the methyls, they are sufficiently stable to be used at temperatures where polymerization rates are adequate. Some data are summarized in Table VIII ( 9) TT-acceptor ligands are clearly disadvantageous. It will be seen that some of the systems are more active than Ziegler types, although stereoselectivity is poorer. [Pg.323]

In disinfection of instruments, the chemicals used must not adversely affect the instruments, e.g. cause corrosion of metals, affect clarity or integrity of lenses, or change texture of synthetic polymers. Many materials such as fabrics, rubber, plastics are capable of adsorbing certain disinfectants, e.g. quaternary ammonium compounds (QACs), are adsorbed by fabrics, while phenolics are adsorbed by rubber, the consequence ofthis being a reduction in concentration of active compound. A disinfectant can only exert its effect ifit is in contact with the item being treated. Therefore access to all parts of an instrument or piece of equipment is essential. For small items, total immersion in the disinfectant must also be ensured. [Pg.207]

In contrast to the effects obtained with viruses mentioned earlier, rous sarcoma virus (RSV) is inactivated by direct contact with 2 [81]. Evidence for the drug action by a chelate compound was obtained by using concentrations of 3a and copper(II) sulfate, neither of which individually affected enzyme activity or transforming abilities [82]. In a later study these workers showed that several metal complexes inhibit the RNA dependent DNA polymerases and the transforming ability of RSV, the most active compound being a 1 1 copper(II)... [Pg.8]

In this activity, you will use a few metals, their compounds, and dilute hydrochloric acid to show single-replacement reactions and construct an activity series. [Pg.73]

Vol. 9 Analytical Chemistry of Titanium Metals and Compounds. By Maurice Codell Vol. 10 The Chemical Analysis of Air Pollutants. By the late Morris B. Jacobs Vol. 11 X-Ray Spectrochemical Analysis. Second Edition. By L. S. Birks Vol. 12 Systematic Analysis of Surface-Active Agents. Second Edition. By Milton J. Rosen and Henry A. Goldsmith... [Pg.353]

The new silazane 5 may be reacted with activated metals, organometallic compounds or simple metal amides, or may first be transformed to its lithium salt and then reacted with metal(II) chlorides [11]. In all these cases, metal derivatives of 5 are obtained with the general formula j [Mc (/BuO)Si 9N(9M, which have no further base coordinated to the metal. So far we have synthesized amides with M = Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Ba, all elements in oxidation state +2. X-ray structure determinations have been performed on the calcium, manganese, iron, zinc, and barium derivatives. [Pg.221]

Attempts to synthesize transition metal alkyl compounds have been continuous since 1952 when Herman and Nelson (1) reported the preparation of the compound C H6>Ti(OPri)3 in which the phenyl group was sigma bonded to the metal. This led to the synthesis by Piper and Wilkinson (2) of (jr-Cpd)2 Ti (CH3)2 in 1956 and a large number of compounds of titanium with a wide variety of ligands such as ir-Cpd, CO, pyridine, halogen, etc., all of which were inactive for polymerization. An important development was the synthesis of methyl titanium halides by Beerman and Bestian (3) and Ti(CH3)4 by Berthold and Groh (4). These compounds show weak activity for ethylene polymerization but are unstable at temperatures above — 70°C. At these temperatures polymerizations are difficult and irreproduceable and consequently the polymerization behavior of these compounds has been studied very little. In 1963 Wilke (5) described a new class of transition metal alkyl compounds—x-allyl complexes,... [Pg.264]

Compounds of the type Zr(7r-Cpd)2, Ti(Tr-Cpd)2, and Cr(CaH6)2, were found to be completely inactive with all monomers whereas a significant number of transition metal allyl compounds were found to have weak activity for ethylene polymerization. The latter results are summarized in Table I. Despite the fact that many transition metal allyl compounds are unstable above 0°C, in the presence of monomer, the metal allyl structure... [Pg.266]

The activity of transition metal allyl compounds for the polymerization of vinyl monomers has been studied by Ballard, Janes, and Medinger (10) and their results are summarized in Table II. Monomers that polymerize readily with anionic initiators, such as sodium or lithium alkyls, polymerize vigorously with allyl compounds typical of these are acrylonitrile, methyl methacrylate, and the diene isoprene. Vinyl acetate, vinyl chloride, ethyl acrylate, and allylic monomers do not respond to these initiators under the conditions given in Table II. [Pg.270]

The results of polymerizing ethylene using varying sigma-bonded transition metal alkyl compounds are summarized in Table VII. It is evident that none of the catalysts are very active and are comparable with the simple allyl compounds listed in Table I. [Pg.279]

Some of the vinyl monomers polymerized by transition metal benzyl compounds are listed in Table IX. In this table R represents the rate of polymerization in moles per liter per second M sec-1), [M]0 the initial monomer concentration in moles per liter (M) and [C]0 the initial concentration of catalyst in the same units. The ratio i2/[M]0[C]0 gives a measure of the reactivity of the system which is approximately independent of the concentration of catalyst and monomer. It will be observed that the substitution in the benzyl group is able to affect the polymerization rate significantly, but the groups that increase the polymerization rate toward ethylene have the opposite effect where styrene is concerned. It would also appear that titanium complexes are more active than zirconium. The results with styrene and p-bromostyrene suggests that substituents in the monomer, which increase the electronegative character of the double bond, reduces the polymerization rate. The order of reactivity of various olefinically unsaturated compounds is approximately as follows ... [Pg.282]


See other pages where Metals, activated compounds is mentioned: [Pg.75]    [Pg.164]    [Pg.113]    [Pg.615]    [Pg.181]    [Pg.667]    [Pg.9]    [Pg.198]    [Pg.243]    [Pg.49]    [Pg.62]    [Pg.162]    [Pg.762]    [Pg.3]    [Pg.4]    [Pg.249]    [Pg.23]    [Pg.405]    [Pg.571]    [Pg.20]    [Pg.123]    [Pg.128]    [Pg.90]    [Pg.743]    [Pg.220]    [Pg.126]    [Pg.127]    [Pg.271]   
See also in sourсe #XX -- [ Pg.1816 , Pg.1817 ]




SEARCH



© 2024 chempedia.info